Normal view

Received yesterday — 5 June 2025NASA

NASA Awards Third Crowdsourcing Contract Iteration

5 June 2025 at 15:34
The letters NASA on a blue circle with red and white detail, all surrounded by a black background
Credit: NASA

NASA continues to collaborate with global communities to solve complex challenges through crowdsourcing with a series of 25 new NASA Open Innovation Service (NOIS) contracts managed by the agency’s Johnson Space Center in Houston.

The contract aims to empower NASA’s workforce by actively engaging the public to find creative solutions to difficult space exploration challenges through rapid experimentation with new methodologies, new technologies, and unique perspectives, ensuring NASA remains at the forefront of innovation while accomplishing its missions.

This is the third NOIS contract, managed by NASA’s Center of Excellence for Collaborative Innovation (CoECI), and used by NASA and other government agencies. The NOIS3 contract will provide solutions through multiple crowdsourcing tools and methodologies, which include public prize competitions, freelance tasking, technology searches, and other crowd-based methods.

The total value of the NOIS3 contract is $475 million over 10 years. There is a guaranteed $500 minimum obligation for each contract award. The base contract spans June 5, 2025, through May 31, 2027, and there are two options, the first for three years, and the second for five years. If all options are exercised, work could continue through May 31, 2035.

The awardees are:

  • Blue Clarity, Vienna, Virginia
  • Capital Consulting Corp., Fairfax, Virginia
  • Challenge Works, London, United Kingdom
  • CrowdPlat Inc., Pleasanton, California
  • Design Interactive Inc., Orlando, Florida
  • DrivenData Inc., Denver
  • Ensemble Government Services, Hyattsville, Maryland
  • Hyperion Technologies, Arlington, Virginia
  • Floor23 Digital, Jackson, Wisconsin
  • Freelancer International, Sydney, Australia
  • HeroX, Wilmington, Delaware
  • HYVE Innovate, Munchen, Germany
  • Innoget, Rockville, Maryland
  • Institute of Competition Sciences, San Francisco
  • Loyal Source Government Services, Orlando, Florida
  • Luminary Labs, New York City
  • National Institute of Aerospace Associates, Hampton, Virginia
  • Randstad Federal, Duluth, Georgia
  • Rios Partners, Arlington, Virginia
  • SecondMuse, Bernalillo, New Mexico
  • TechConnect, Summerville, South Carolina
  • Toffler Associates, Arlington, Virginia
  • Tongal Inc., Los Angeles
  • Topcocder, Indianapolis
  • yet2.com Inc., Waltham, Massachusetts

NASA’s CoECI provides guidance on open innovation initiatives, helping define challenges and requirements and formulating and evaluating potential solutions. The center’s end-to-end service allows NASA and other federal agencies to rapidly experiment with new methods and solve critical problems through innovation and collaboration.

Learn more about the NASA Center of Excellence at:

https://www.nasa.gov/coeci

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Kelly Humphries
Johnson Space Center, Houston
281-483-5111
kelly.o.humphries@nasa.gov

Auburn Team Wins 2025 NASA Moon and Mars Design Competition

5 June 2025 at 13:00

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The three members of Auburn University's 2025 RASC-AL team hold their awards for first place overall and best in theme.
Auburn University’s project, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER),” won top prize in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum.
National Institute of Aerospace

A team from Auburn University took top honors in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum, where undergraduate and graduate teams competed to develop new concepts for operating on the Moon, Mars and beyond. 

Auburn’s project, “Dynamic Ecosystems for Mars Environmental Control and Life Support Systems (ECLSS) Testing, Evaluation, and Reliability (DEMETER)” advised by Dr. Davide Guzzetti, took home top prize out of 14 Finalist Teams from academic institutions across the nation. Virginia Polytechnic Institute and State University took second place overall for their concept, “Adaptive Device for Assistance and Maintenance (ADAM),” advised by Dr. Kevin Shinpaugh. The University of Maryland took third place overall with their project, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION),” advised by Dr. David Akin, Nich Bolatto, and Charlie Hanner. 

The first and second place overall winning teams will present their work at the 2025 AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND) Conference in Las Vegas, Nevada in July. 

Virginia Polytechnic Institute and State University team members with their second place and
Virginia Polytechnic Institute and State University took second place overall in NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition Forum for their concept, “Adaptive Device for Assistance and Maintenance (ADAM).”
National Institute of Aerospace

The RASC-AL Competition, which took place from June 2-4, 2025, in Cocoa Beach, Florida, is a unique initiative designed to bridge the gap between academia and the aerospace industry, empowering undergraduate and graduate students to apply their classroom knowledge to real-world challenges in space exploration. This year’s themes included “Sustained Lunar Evolution – An Inspirational Moment,” “Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign,” and “Small Lunar Servicing and Maintenance Robot.”  

“The RASC-AL Competition cultivates students who bring bold, imaginative thinking to the kinds of complex challenges we tackle at NASA,” said Dan Mazanek, RASC-AL program sponsor and senior space systems engineer at NASA’s Langley Research Center in Hampton, Virginia. “These teams push the boundaries of what’s possible in space system design and offer new insights. These insights help build critical engineering capabilities, preparing the next generation of aerospace leaders to step confidently into the future of space exploration.” 

As NASA continues to push the boundaries of space exploration, the RASC-AL Competition stands as an opportunity for aspiring aerospace professionals to design real-world solutions to complex problems facing the Agency. By engaging with the next generation of innovators, NASA can collaborate with the academic community to crowd-source new solutions for the challenges of tomorrow. 

Additional 2025 Forum Awards include: 

Best in Theme: Sustained Lunar Evolution: An Inspirational Moment 

  • Virginia Polytechnic Institute and State University 
  • Project Title: Project Aeneas 
  • Advisor: Dr. Kevin Shinpaugh 

    Best in Theme: Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign 

    • Auburn University 
    • Project Title: Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER) 
    • Advisor: Dr. Davide Guzzetti 

    Best in Theme: Small Lunar Servicing and Maintenance Robot 

    • Virginia Polytechnic Institute and State University 
    • Project Title: Adaptive Device for Assistance and Maintenance (ADAM) 
    • Advisor: Dr. Kevin Shinpaugh 

    Best Prototype: South Dakota State University 

    • Project Title: Next-gen Operations and Versatile Assistant (NOVA) 
    • Advisor: Dr. Todd Letcher, Allea Klauenberg, Liam Murray, Alex Schaar, Nick Sieler, Dylan Stephens, Carter Waggoner 

        RASC-AL is open to undergraduate and graduate students studying disciplines related to human exploration, including aerospace, bio-medical, electrical, and mechanical engineering, and life, physical, and computer sciences. RASC-AL projects allow students to incorporate their coursework into space exploration objectives in a team environment and help bridge strategic knowledge gaps associated with NASA’s vision. Students have the opportunity to interact with NASA officials and industry experts and develop relationships that could lead to participation in other NASA student research programs.   

        RASC-AL is sponsored by the Strategies and Architectures Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA Langley. It is administered by the National Institute of Aerospace.   

        For more information about the RASC-AL competition, including complete theme and submission guidelines, visit: http://rascal.nianet.org

        National Institute of Aerospace

        About the Author

        Joe Atkinson

        Public Affairs Officer, NASA Langley Research Center

        Keep Exploring

        Discover More Topics From NASA

        NASA Earth Scientist Elected to National Academy of Sciences

        5 June 2025 at 12:33

        3 min read

        Preparations for Next Moonwalk Simulations Underway (and Underwater)

        Earth scientist Compton J. Tucker has been elected to the National Academy of Sciences for his work creating innovative tools to track the planet’s changing vegetation from space. It’s research that has spanned nearly 50 years at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where he is a visiting scientist after retiring in March. 

        Tucker’s research began with identifying wavelengths of light that are absorbed or reflected as plants undergo photosynthesis, and has evolved into calculating the health and productivity of vegetation over time with satellites. 

        “I’m honored and surprised,” Tucker said of his election. “There were opportunities at the Goddard Space Flight Center that have enabled this work that couldn’t be found elsewhere. There were people who built satellites, who understood satellite data, and had the computer code to process it. All the work I’ve done has been part of a team, with other people contributing in different ways. Working at NASA is a team effort of science and discovery that’s fun and intellectually rewarding.” 

        A headshot of a man smiling in front of a screen showing colorful data about Earth's oceans. he has grey hair, glasses and a moustache.
        Earth scientist Compton Tucker, who has studied remote sensing of vegetation at NASA Goddard for 50 years, has been elected to the National Academy of Sciences.
        Courtesy Compton Tucker

        Tucker earned his master’s and doctoral degrees from Colorado State University, where he worked on a National Science Foundation-funded project analyzing spectrometer data of grassland ecosystems. In 1975, he came to NASA Goddard as a postdoctoral fellow and used what he learned in his graduate work to modify the imager on National Oceanic and Atmospheric Administration (NOAA) meteorological satellites and modify Landsat’s thematic mapper instrument. 

        He became a civil servant at the agency in 1977, and continued work with radiometers to study vegetation – first with handheld devices, then with NOAA’s Advanced Very High Resolution Radiometer satellite instruments.  He has also used data from Landsat satellites, Moderate Resolution Imaging Spectroradiometer instruments, and commercial satellites. His scientific papers have been cited 100,000 times, and one of his recent studies mapped 10 billion individual trees across Africa’s drylands to inventory carbon storage at the tree level.

        “The impact of Compton Tucker’s work over the last half-century at Goddard is incredible,” said Dalia Kirschbaum, director of the Earth Sciences Division at NASA Goddard. “Among his many achievements, he essentially developed the technique of using satellites to study photosynthesis from plants, which people have used to monitor droughts, forecast crop shortages, defeat the desert locust, and even predict disease outbreaks. This is a well-deserved honor.”

        A collage of three images, all grainy film photos that have been digitized. To the left is a vertical image of a man in a green field, with a scientific instrument hanging from a strap around his neck, a cylindrical part of it in his hand. To the top right is an image of three men crouched in a different field, doing work on a small circular plot of dirt. To the bottom right is an image of two men and a woman in a flourescently lit room, surrounded by reels of tape that hold scientific data.
        Goddard scientist Compton Tucker’s work using remote sensing instruments to study vegetation involved field work in Iceland in 1976, left, graduate student research at Colorado State University in the early 1970s, top right, and analyzing satellite data stored on tape reels at Goddard.
        Courtesy Compton Tucker

        The National Academy of Sciences was proposed by Abraham Lincoln and established by Congress in 1863, charged with advising the United States on science and technology. Each year, up to 120 new members are elected “in recognition of their distinguished and continuing achievements in original research,” according to the organization.

        In addition his role as a visiting scientist at Goddard, Tucker is also an adjunct professor at the University of Maryland and a consulting scholar at the University of Pennsylvania’s University Museum. He was awarded the National Air and Space Collins Trophy for Current Achievement in 1993 and the Vega Medal by the Swedish Society of Anthropology and Geography in 2014. He is a fellow of the American Association for the Advancement of Science and the American Geophysical Union, and won the Senior Executive Service Presidential Rank Award for Meritorious Service in 2017, among other honors. 

        By Kate Ramsayer

        NASA’s Goddard Space Flight Center, Greenbelt, Md.

        Share

        Details

        Last Updated
        Jun 05, 2025
        Editor
        Erica McNamee
        Contact
        Kate D. Ramsayer
        Location
        NASA Goddard Space Flight Center

        ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop

        5 June 2025 at 12:19

        8 min read

        ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop

        Introduction

        On September 15, 2018, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission launched from Vandenberg Air Force Base and began its journey to provide spatially dense and fine-precision global measurements of Earth’s surface elevation. Now in Phase E of NASA’s project life cycle (where the mission is carried out, data is collected and analyzed, and the spacecraft is maintained) of the mission and with almost six years of data collection, the focus shifts to looking ahead to new applications and synergies that may be developed using data from ICESat-2’s one instrument: the Advanced Topographic Laster Altimetry System (ATLAS) – see Figure 1.

        ICESat-2 figure 1
        Figure 1. The ATLAS instrument onboard the ICESat-2 platform obtains data using green, photon-counting lidar that is split into six beams.
        Figure credit: ICESat-2 mission team

        Satellite-derived bathymetry (SDB) is the process of mapping the seafloor using satellite imagery. The system uses light penetration and reflection in the water to make measurements and estimate variations in ocean floor depths. SDB provides several advantages over other bathymetry techniques (e.g., cost-effectiveness, global coverage, and faster data acquisition). On the other hand, SDB can be limited by water clarity, spatial resolution of the remote sensing measurement, and accuracy, depending on the method and satellite platform/instrument. These limitations notwithstanding, SDB can be used in a wide variety of applications (e.g., coastal zone management, navigation and safety, marine habitat monitoring, and disaster response). ICESat-2 has become a major contributor to SDB, with over 2000 journal article references to this topic to date. Now is the time to think about the state-of-the-art and additional capabilities of SDB for the future.

        To help stimulate such thinking, the NASA ICESat-2 applications team hosted a one-day workshop on March 17, 2025, which focused on the principles and methods for SDB. Held in conjunction with the annual US-Hydro meeting on March 17–20, 2025 at the Wilmington Convention Center in Wilmington, NC, the meeting was hosted by the Hydrographic Society of America. During the workshop the applications team brought together SDB end-users, algorithm developers, operators, and decision makers to discuss the current state and future needs of satellite bathymetry for the community. The objective of this workshop was to provide a space to foster collaboration and conceptualization of SDB applications not yet exploited and to allow for networking to foster synergies and collaborations between different sectors.

        Meeting Overview

        The workshop provided an opportunity for members from government, academia, and private sectors to share their SDB research, applications, and data fusion activities to support decision making and policy support across a wide range of activities. Presenters highlighted SDB principles, methods, and tools for SDB, an introduction of the new ICESat-2 bathymetric data product (ATL24), which is now available through the National Snow and Ice Data Center (NSIDC). During the workshop, the ICESat-2 team delivered a live demonstration of a web service for science data processing. Toward the end of the day, the applications team opened an opportunity for attendees to gather and discuss various topics related to SDB. This portion of the meeting was also available to online participation via Webex webinars, which broadened the discussion.

        Meeting Goal

        The workshop offered a set of plenary presentations and discussions. During the plenary talks, participants provided an overview of Earth observation and SDB principles, existing methods and tools, an introduction to the newest ICESat-2 bathymetry product ATL24, a demonstration of the use of the webservice SlideRule Earth, and opportunities for open discission, asking questions and developing collaborations.

        Meeting and Summary Format

        The agenda of the SDB workshop was intended to bring together SDB end-users, including ICESat-2 application developers, satellite operators, and decision makers from both government and non-governmental entities to discuss the current state and future needs of the community. This report is organized according to the workshop’s six session topics with a brief narrative summary of each presentation included. The discussions that followed were not recorded and are not included in the report. The last section of this report consists of conclusions and future steps. The online meeting agenda includes links to slide decks for many of the presentations.

        Welcoming Remarks

        Aimee Neeley [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)—ICESat-2 Mission Applications Lead] organized the workshop and served as the host for the event. She opened the day with a brief overview of workshop goals, logistics, and the agenda.

        Overview of Principles of SDB

        Ross Smith [TCartaSenior Geospatial Scientist] provided an overview of the principles of space-based bathymetry, including the concepts, capabilities, limitations, and methods. Smith began by relaying the history of satellite-derived bathymetry, which began with a collaboration between NASA and Jacques Cousteau in 1975, in which Cousteau used Landsat 1 data, as well as in situ data to calculate bathymetry to a depth of 22 m (72 ft) in the Bahama bank. Smith then described the five broad methodologies and concepts for deriving bathymetry from remote sensing: radar altimetry, bottom reflectance, wave kinematics, laser altimetry, and space-based photogrammetry – see Figure 2. He then introduced the broad methodologies, most commonly used satellite sensors, the capabilities and limitations of each sensor, and the role of ICESat-2 in satellite bathymetry.

        ICESat-2 figure 2
        Figure 2. Satellite platforms commonly used for SDB.
        Figure credit: Ross Smith

        Review of SDB Methods and Tools

        In this grouping of plenary presentations, representatives from different organizations presented their methods and tools for creating satellite bathymetry products.

        Gretchen Imahori [National Oceanic and Atmospheric Administration’s (NOAA) National Geodetic Survey, Remote Sensing Division] presented the NOAA SatBathy (beta v2.2.3) Tool Update. During this presentation, Imahori provided an overview of the NOAA SatBathy desktop tool, example imagery, updates to the latest version of the tool, and the implementation plan for ATL24. The next session included more details about ATL24.

        Minsu Kim [United States Geological Survey (USGS), Earth Resource and Observation Center (EROS)/ Kellogg, Brown & Root (KBR)—Chief Scientist] presented the talk Satellite Derived Bathymetry (SDB) Using OLI/MSI Based-On Physics-Based Algorithm. He provided an overview of an SDB method based on atmospheric and oceanic optical properties. Kim also shared examples of imagery from the SDB product – see Figure 3.

        Figure 3. Three-dimensional renderings of the ocean south of Key West, FL created by adding SDB Digital Elevation Model (physics-based) to a Landsat Operational Land Imager (OLI) scene [top] and a Sentinel-2 Multispectral Imager (MSI) scene [bottom].
        Figure credit: Minsu Kim

        Edward Albada [Earth Observation and Environmental Services GmbH (EOMAP)—Principal] presented the talk Satellite Lidar Bathymetry and EoappTM SLB-Online. The company EOMAP provides various services, including SDB and habitat mapping. For context, Albada provided an overview of EoappTM SDB-Online, a cloud-based software for creating SDB. (EoappTM SDB-online is one of several Eoapp apps and is based on the ICESat-2 photon data product (ATL03). Albada also provided example use cases from Eoapp – see Figure 4.

        ICESat-2 figure 4
        Figure 4.A display of the Marquesas Keys (part of the Florida Keys) using satellite lidar bathymetry data from the Eoapp SLB-Online tool from EOMAP.
        Figure credit: Edward Albada

        Monica Palaseanu-Lovejoy [USGS GMEG—Research Geographer] presented on a Satellite Triangulated Sea Depth (SaTSeaD): Bathymetry Module for NASA Ames Stereo Pipeline (ASP). She provided an overview of the shallow water bathymetry SaTSeaD module, a photogrammetric method for mapping bathymetry. Palaseanu-Lovejoy presented error statistics and validation procedures. She also shared case study results from Key West, FL; Cocos Lagoon, Guam; and Cabo Rojo, Puerto Rico – see Figure 5.

        ICESat-2 figure 5
        Figure 5. Photogrammetric bathymetry map of Cabo Roja, Puerto Rico created using the SatSeaD Satellite Triangulated Sea Depth (SaTSeaD): Bathymetry Module for NASA Ames Stereo Pipeline (ASP) module.
        Figure credit: Monica Palaseanu-Lovejoy

        Ross Smith presented TCarta’s Trident Tools: Approachable SDB|Familiar Environment. During this presentation, Smith provided an overview of the Trident Tools Geoprocessing Toolbox deployed in Esri’s ArcPro. Smith described several use cases for the toolbox in Abu Dhabi, United Arab Emirates; Lucayan Archipelago, Bahamas; and the Red Sea.

        Michael Jasinski [GSFC—Research Hydrologist] presented The ICESat-2 Inland Water Along Track Algorithm (ATL13). He provided an overview of the ICESat-2 data product ATL13 an inland water product that is distributed by NSIDC. Jasinski described the functionality of the ATL13 semi-empirical algorithm and proceeded to provide examples of its applications with lakes and shallow coastal waters – see Figure 6.

        ICESat-2 figure 6
        Figure 6. A graphic of the network of lakes and rivers in North America that are measured by ICESat-2.
        Figure credit: Michael Jasinski

        ATL24 Data Product Update

        Christopher Parrish [Oregon State University, School of Civil and Construction Engineering—Professor] presented ATL24: A New Global ICESat-2 Bathymetric Data Product. Parrish provided an overview of the recently released ATL24 product and described the ATL24 workflow, uncertainty analysis, and applications in shallow coastal waters. Parrish included a case study where ATL24 data were used for bathymetric mapping of Kiriwina Island, Papua New Guinea – see Figure 7.

        ICESat-2 figure 7
        Figure 7. ATL24 data observed for Kiriwina Island, Papua New Guinea.
        Figure credit: Christopher Parrish

        SlideRule Demo

        J. P. Swinski [GSFC—Computer Engineer] presented SlideRule Earth: Enabling Rapid, Scalable, Open Science. Swinski explained that SlideRule Earth is a public web service that provides access to on-demand processing and visualization of ICESat-2 data. SlideRule can be used to process a subset of ICESat-2 data products, including ATL24 – see Figure 8.

        ICESat-2 figure 8
        Figure 8. ATL24 data observed for Sanibel, FL as viewed on the SlideRule Earth public web client.
        Figure credit: SlideRule Earth

        SDB Accuracy

        Kim Lowell [University of New Hampshire—Data Analytics Research Scientist and Affiliate Professor] presented SDB Accuracy Assessment and Improvement Talking Points. During this presentation, Lowell provided examples of accuracy assessments and uncertainty through the comparison of ground measurement of coastal bathymetry to those modeled from satellite data.

        Conclusion

        The ICESat-2 Satellite Bathymetry workshop fostered discussion and collaboration around the topic of SDB methods. The plenary speakers presented the state-of-the-art methods used by different sectors and organizations, including government and private entities. With the release of ATL24, it was prudent to have a conversation about new and upcoming capabilities for all methods and measurements of satellite bathymetry. Both in-person and online participants were provided with the opportunity to learn, ask questions, and discuss potential applications in their own research. The ICESat-2 applications team hopes to host more events to ensure the growth of this field and to maximize the capabilities of ICESat-2 and other Earth Observing systems.

        Share

        Details

        Last Updated
        Jun 05, 2025

        Related Terms

        NASA’s IXPE Obtains First X-ray Polarization Measurement of Magnetar Outburst

        5 June 2025 at 11:00

        4 min read

        Preparations for Next Moonwalk Simulations Underway (and Underwater)

        What happens when the universe’s most magnetic object shines with the power of 1,000 Suns in a matter of seconds? Thanks to NASA’s IXPE (Imaging X-ray Polarimetry Explorer), a mission in collaboration with ASI (Italian Space Agency), scientists are one step closer to understanding this extreme event. 

        Magnetars are a type of young neutron star — a stellar remnant formed when a massive star reaches the end of its life and collapses in on itself, leaving behind a dense core roughly the mass of the Sun, but squashed down to the size of a city. Neutron stars display some of the most extreme physics in the observable universe and present unique opportunities to study conditions that would otherwise be impossible to replicate in a laboratory on Earth.

        Illustrated magnetar flyby sequence showing magnetic field lines. A magnetar is a type of isolated neutron star, the crushed, city-size remains of a star many times more massive than our Sun. Their magnetic fields can be 10 trillion times stronger than a refrigerator magnet's and up to a thousand times stronger than a typical neutron star's. This represents an enormous storehouse of energy that astronomers suspect powers magnetar outbursts.
        NASAs Goddard Space Flight Center/Chris Smith (USRA)

        The magnetar 1E 1841-045, located in the remnants of a supernova (SNR Kes 73) nearly 28,000 light-years from Earth, was observed to be in a state of outburst by NASA’s SwiftFermi, and NICER telescopes on August 21, 2024. 

        A few times a year, the IXPE team approves requests to interrupt the telescope’s scheduled observations to instead focus on unique and unexpected celestial events. When magnetar 1E 1841-045 entered this brighter, active state, scientists decided to redirect IXPE to obtain the first-ever polarization measurements of a flaring magnetar.

        Magnetars have magnetic fields several thousand times stronger than most neutron stars and host the strongest magnetic fields of any known object in the universe. Disturbances to their extreme magnetic fields can cause a magnetar to release up to a thousand times more X-ray energy than it normally would for several weeks. This enhanced state is called an outburst, but the mechanisms behind them are still not well understood. 

        Through IXPE’s X-ray polarization measurements, scientists may be able to get closer to uncovering the mysteries of these events. Polarization carries information about the orientation and alignment of the emitted X-ray light waves; the higher the degree of polarization, the more the X-ray waves are traveling in sync, akin to a tightly choreographed dance performance. Examining the polarization characteristics of magnetars reveals clues about the energetic processes producing the observed photons as well as the direction and geometry of the magnetar magnetic fields. 

        The IXPE results, aided by observations from NASA’s NuSTAR and NICER telescopes, show that the X-ray emissions from 1E 1841-045 become more polarized at higher energy levels while still maintaining the same direction of propagation. A significant contribution to this high polarization degree comes from the hard X-ray tail of 1E 1841-045, an energetic magnetospheric component dominating the highest photon energies observed by IXPE. “Hard X-rays” refer to X-rays with shorter wavelengths and higher energies than “soft X-rays.” Although prevalent in magnetars, the mechanics driving the production of these high energy X-ray photons are still largely unknown. Several theories have been proposed to explain this emission, but now the high polarization associated with these hard X-rays provide further clues into their origin.

        This illustration depicts IXPE’s measurements of X-ray polarization emitting from magnetar 1E 1841-045 located within the Supernova Remnant Kes 73. At the time of observation, the magnetar was in a state of outburst and emitting the luminosity equivalent to 1000 suns. By studying the X-ray polarization of magnetars experiencing an outburst scientists may be able to get closer to uncovering the mysteries of these events.
        Michela Rigoselli/Italian National Institute of Astrophysics

        The results are presented in two papers published in The Astrophysical Journal Letters, one led by Rachael Stewart, a PhD student at George Washington University, and the other by Michela Rigoselli of the Italian National Institute of Astrophysics.  The papers represent the collective effort of large international teams across several countries.

        “This unique observation will help advance the existing models aiming to explain magnetar hard X-ray emission by requiring them to account for this very high level of synchronization we see among these hard X-ray photons,” said Stewart. “This really showcases the power of polarization measurements in constraining physics in the extreme environments of magnetars.”

        Rigoselli, lead author of the companion paper, added, “It will be interesting to observe 1E 1841-045 once it has returned to its quiescent, baseline state to follow the evolution of its polarimetric properties.”

        IXPE is a space observatory built to discover the secrets of some of the most extreme objects in the universe. Launched in December 2021 from NASA’s Kennedy Space Center on a Falcon 9 rocket, the IXPE mission is part of NASA’s Small Explorer series. 

        IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.

        Learn more about IXPE’s ongoing mission here:

        https://www.nasa.gov/ixpe

        Media Contact

        Elizabeth Landau
        NASA Headquarters
        elizabeth.r.landau@nasa.gov
        202-358-0845

        Lane Figueroa
        Marshall Space Flight Center, Huntsville, Ala.
        lane.e.figueroa@nasa.gov
        256.544.0034 

        About the Author

        Beth Ridgeway

        Beth Ridgeway

        Keep Exploring

        Discover More Topics From NASA

        NASA’s PACE Mission Reveals a Year of Terrestrial Data on Plant Health

        5 June 2025 at 10:15

        4 min read

        Preparations for Next Moonwalk Simulations Underway (and Underwater)

        A lot can change in a year for Earth’s forests and vegetation, as springtime and rainy seasons can bring new growth, while cooling temperatures and dry weather can bring a dieback of those green colors. And now, a novel type of NASA visualization illustrates those changes in a full complement of colors as seen from space.

        Researchers have now gathered a complete year of PACE data to tell a story about the health of land vegetation by detecting slight variations in leaf colors. Previous missions allowed scientists to observe broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. But PACE now allows scientists to see three different pigments in vegetation: chlorophyll, anthocyanins, and carotenoids. The combination of these three pigments helps scientists pinpoint even more information about plant health. Credit: NASA’s Goddard Space Flight Center

        NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite is designed to view Earth’s microscopic ocean plants in a new lens, but researchers have proved its hyperspectral use over land, as well.

        Previous missions measured broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. Now, for the first time, PACE measurements have allowed NASA scientists and visualizers to show a complete year of global vegetation data using three pigments: chlorophyll, anthocyanins, and carotenoids. That multicolor imagery tells a clearer story about the health of land vegetation by detecting the smallest of variations in leaf colors.

        “Earth is amazing. It’s humbling, being able to see life pulsing in colors across the whole globe,” said Morgaine McKibben, PACE applications lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s like the overview effect that astronauts describe when they look down at Earth, except we are looking through our technology and data.”

        A visualization of North America where the land is overlayed with colors representing data. The east side of the land swirls with blues, greens, and pinks, while the west side is primarily gray.
        Anthocyanins, carotenoids, and chlorophyll data light up North America, highlighting vegetation and its health. For the full visualization, visit: https://svs.gsfc.nasa.gov/5548/
        Credit: NASA’s Scientific Visualization Studio

        Anthocyanins are the red pigments in leaves, while carotenoids are the yellow pigments – both of which we see when autumn changes the colors of trees. Plants use these pigments to protect themselves from fluctuations in the weather, adapting to the environment through chemical changes in their leaves. For example, leaves can turn more yellow when they have too much sunlight but not enough of the other necessities, like water and nutrients. If they didn’t adjust their color, it would damage the mechanisms they have to perform photosynthesis.

        In the visualization, the data is highlighted in bright colors: magenta represents anthocyanins, green represents chlorophyll, and cyan represents carotenoids. The brighter the colors are, the more leaves there are in that area. The movement of these colors across the land areas show the seasonal changes over time.

        In areas like the evergreen forests of the Pacific Northwest, plants undergo less seasonal change. The data highlights this, showing comparatively steadier colors as the year progresses.

        The combination of these three pigments helps scientists pinpoint even more information about plant health.

        “Shifts in these pigments, as detected by PACE, give novel information that may better describe vegetation growth, or when vegetation changes from flourishing to stressed,” said McKibben. “It’s just one of many ways the mission will drive increased understanding of our home planet and enable innovative, practical solutions that serve society.”

        The Ocean Color Instrument on PACE collects hyperspectral data, which means it observes the planet in 100 different wavelengths of visible and near infrared light. It is the only instrument – in space or elsewhere – that provides hyperspectral coverage around the globe every one to two days. The PACE mission builds on the legacy of earlier missions, such as Landsat, which gathers higher resolution data but observes a fraction of those wavelengths.

        In a paper recently published in Remote Sensing Letters, scientists introduced the mission’s first terrestrial data products.

        “This PACE data provides a new view of Earth that will improve our understanding of ecosystem dynamics and function,” said Fred Huemmrich, research professor at the University of Maryland, Baltimore County, member of the PACE science and applications team, and first author of the paper. “With the PACE data, it’s like we’re looking at a whole new world of color. It allows us to describe pigment characteristics at the leaf level that we weren’t able to do before.”

        As scientists continue to work with these new data, available on the PACE website, they’ll be able to incorporate it into future science applications, which may include forest monitoring or early detection of drought effects.

        By Erica McNamee

        NASA’s Goddard Space Flight Center, Greenbelt, Md.

        Share

        Details

        Last Updated
        Jun 05, 2025
        Editor
        Kate D. Ramsayer
        Contact
        Kate D. Ramsayer

        💾

        Researchers have now gathered a complete year of PACE data to tell a story about the health of land vegetation by detecting slight variations in leaf colors....

        NASA Astronaut Jeanette Epps Retires

        5 June 2025 at 09:39
        A black woman in a red shirt poses in the International Space Station cupola with the Earth pictured behind her.
        Expedition 71 Flight Engineer and NASA astronaut Jeanette Epps poses for a portrait inside the seven-window cupola, the International Space Station’s “window to the world,” while orbiting 259 miles above Greece.
        NASA

        NASA astronaut Jeanette Epps retired May 30, after nearly 16 years of service with the agency. Epps most recently served as a mission specialist during NASA’s SpaceX Crew-8 mission, spending 235 days in space, including 232 days aboard the International Space Station, working on hundreds of scientific experiments during Expedition 71/72.

        “I have had the distinct pleasure of following Jeanette’s journey here at NASA from the very beginning,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Jeanette’s tenacity and dedication to mission excellence is admirable. Her contributions to the advancement of human space exploration will continue to benefit humanity and inspire the next generation of explorers for several years to come.”

        Epps was selected in 2009 as a member of NASA’s 20th astronaut class. In addition to her spaceflight, she served as a lead capsule communicator, or capcom, in NASA’s Mission Control Center and as a crew support astronaut for two space station expeditions.

        “Ever since Jeanette joined the astronaut corps, she has met every challenge with resilience and determination,” said Joe Acaba, NASA’s chief astronaut. “We will miss her greatly, but I know she’s going to continue to do great things.”

        Epps also participated in NEEMO (NASA Extreme Environment Mission Operation) off the coast of Florida, conducted geologic studies in Hawaii, and served as a representative to the Generic Joint Operations Panel, which addressed crew efficiency aboard the space station.

        The Syracuse, New York, native holds a bachelor’s degree in physics from Le Moyne College in Syracuse. She also earned master’s and doctorate degrees in aerospace engineering from the University of Maryland in College Park. During her graduate studies, she became a NASA Fellow, authoring several journal and conference articles about her research. Epps also received a provisional patent and a U.S. patent prior to her role at NASA.

        Learn more about International Space Station research and operations at: 

        https://www.nasa.gov/station

        -end-

        Chelsey Ballarte

        Johnson Space Center, Houston

        281-483-5111

        chelsey.n.ballarte@nasa.gov

        Jack Kaye Retires After a Storied Career at NASA

        5 June 2025 at 08:54

        Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] has decided to retire on April 30, 2025, following 42 years of service to NASA – see Photo 1. Most recently, Kaye served as associate director for research of the Earth Science Division (ESD) within NASA’s Science Mission Directorate (SMD). In this position, he was responsible for the research and data analysis programs for Earth System Science that addressed the broad spectrum of scientific disciplines from the stratopause to the poles to the oceans.

        EC Supplemental image
        Photo 1. Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] retired from NASA on April 30, 2025, after a 42-year career.
        Photo credit: Public Domain

        A New York native, Kaye’s interest in space was piqued as a child watching early NASA manned space launches on television. He would often write to NASA to get pictures of the astronauts. In high school, he started an after school astronomy club. Despite a youthful interest in Earth science, as he explained in a 2014 “Maniac Talk” at NASA’s Goddard Space Flight Center, Kaye pursued a slightly different academic path. He obtained a Bachelor’s of Science in chemistry from Adelphi University in 1976 and a Ph.D. in theoretical physical chemistry at the California Institute of Technology in 1982. For his graduate studies, he focused on the quantum mechanics of chemical reactions with an aim toward being able to understand and calculate the activity.

        Following graduate school, Kaye secured a post-doctoral position at the U.S. Naval Research Laboratory, where he studied the chemistry of Earth’s atmosphere with a focus on stratospheric ozone. It was while working in a group of meteorologists at NASA’s Goddard Space Flight Center that Kaye returned to his roots and refocused his scientific energy on studying Earth.

        “NASA had a mandate to study stratospheric ozone,” Kaye said in an interview in 2009. “I got involved in looking at satellite observations and especially trying to interpret satellite observations of stratospheric composition and building models to simulate things, to look both ways, to use the models and use the data.”

        Kaye has held numerous science and leadership positions at NASA. He began his career at GSFC as a researcher for the Stratospheric General Circulation and Chemistry Modeling Project (SGCCP) from 1983–1990 working on stratospheric modeling.  In this role, he also worked on an Earth Observing System Interdisciplinary proposal.  His first role at NASA HQ was managing  as program scientist for the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), as well as numerous other missions. In this role, he was a project scientist for the Atmospheric Laboratory for Applications and Science (ATLAS) series of Shuttle missions. While managing ATLAS, Kaye oversaw the science carried out by a dozen instruments from several different countries. He also managed several other Earth Science missions during this time. See the link to Kaye’s “Maniac Talk.”

        Kaye entered the Senior Executive Service in 1999, where he continued to contribute to the agency by managing NASA’s Earth Science Research Program. In addition, Kaye has held temporary acting positions as deputy director of ESD and deputy chief scientist for Earth Science within SMD. Throughout his career he has focused on helping early-career investigators secure their first awards to establish their career path—see Photo 2.

        Jack Kaye photo 3
        Photo 2. Throughout his career, Jack Kaye has been an advocate for young scientists, helping them get established in their careers. Here, Kaye speaks with the Climate Change Research Initiative cohort at the Mary W. Jackson NASA Headquarters building in Washington, DC on August 7, 2024. The Earth Science Division’s Early Career Research Program’s Climate Change Research Initiative is a year-long STEM engagement and experiential learning opportunity for educators and students from high school to graduate level.
        Photo Credit: NASA/Joel Kowsky

        On numerous occasions, Kaye spoke to different groups emphasizing the agency’s unique role in both developing and utilizing cutting-edge technology, especially remote observations of Earth with different satellite platforms – see Photo 3. With the launch of five new NASA Earth science campaigns in 2020, Kaye stated, “These innovative investigations tackle difficult scientific questions that require detailed, targeted field observations combined with data collected by our fleet of Earth-observing satellites.”

        Jack Kaye photo 3
        Photo 3. Jack Kaye hands out eclipse posters and other outreach materials to attendees at Eclipse Fest 2024.

        Kaye has also represented NASA in interagency and international activities and has been an active participant in the U.S. Global Change Research Program (USGCRP), where he has served for many years as NASA principal of the Subcommittee on Global Change Research. He served as NASA’s representative to the Subcommittee on Ocean Science and Technology and chaired the World Meteorological Organization Expert Team on Satellite Systems. Kaye was named an honorary member of the Asia Oceania Geoscience Society in 2015. He previously completed a six-year term as a member of the Steering Committee for the Global Climate Observing System and currently serves an ex officio member of the National Research Council’s Roundtable on Science and Technology for Sustainability and the Chemical Sciences Roundtable, as well as a member of the Roundtable on Global Science Diplomacy.

        NASA has honored Kaye with numerous awards, including the Distinguished Service Medal in 2022 and the Meritorious Executive in the Senior Executive Service in 2004, 2010, and 2021. In 2024 he was awarded the NASA-USGS Pecora Individual Award honoring excellence in Earth Observation. He was named a Fellow by the American Meteorological Society in 2010 and by the American Association of the Advancement of Science (AAAS) in 2014. Kaye was elected to serve as an office of the Atmospheric and Hydrospheric Science section of the AAAS (2015–2018). AGU has recognized him on two occasions with a Citation for Excellence in Refereeing.

        Over the course of his career Kaye has published more than 50 papers, contributed to numerous reports, books, and encyclopedias, and edited the book Isotope Effects in Gas-Phase Chemistry for the American Chemical Society. In addition, he has attended the Leadership for Democratic Society program at the Federal Executive Institute and the Harvard Senior Managers in Government Program at the John F. Kennedy School of Government at Harvard University.

        “The vantage point of space provides a way to look at the Earth globally, with the ability to observe Earth’s interacting components of air, water, land and ice, and both naturally occurring and human-induced processes,” Kaye said in a November 2024 article published by Penn State University. “It lets us look at variability on a broad range of spatial and temporal scales and given the decades of accomplishments, has allowed us to characterize and document Earth system variability on time scales from minutes to decades.”

        In Memoriam: Dr. Stanley Sander

        5 June 2025 at 08:52
        In Memoriam Banner

        3 min read

        In Memoriam: Dr. Stanley Sander

        In Memoriam – Sander

        Dr. Stanley Sander dedicated more than five decades to atmospheric science at the Jet Propulsion Laboratory, beginning his JPL career as a graduate research assistant in 1971. A leading figure in atmospheric chemistry, Stan made foundational contributions to our understanding of stratospheric ozone depletion, tropospheric air pollution, and climate science related to greenhouse gases.

        His pioneering work in laboratory measurements—particularly of reaction rate constants, spectroscopy, and photochemistry—was designed to forge consensus among often disparate measurements.  His steadfast application of the scientific method was essential for furthering scientific research, as well as for providing sound advice for use in air quality management and environmental policies. His expertise extended beyond Earth’s atmosphere, with studies of methane chemistry on Mars, halogens on Venus, and hydrocarbons in Titan’s atmosphere.

        Stan’s scientific output was vast. He authored over 180 peer-reviewed publications, beginning with his 1976 paper on sulfur dioxide oxidation. His work spans major aspects of atmospheric chemistry—from chlorine, bromine, and nitrogen oxides to sulfur compounds and peroxides. The rate constants, cross-sections, and photochemical data produced in his lab form the cornerstone of atmospheric modeling crucial to the scientific foundation of the Montreal Protocol on Substances that Deplete the Ozone Layer.  He played a central role in the widely used JPL Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies reports, which have collectively garnered over 10,000 citations. His spectroscopic research, which included development of novel spectrometers and polarimeters, resulted in insightful data from sites at JPL, the Table Mountain Facility as well as the California Laboratory for Remote sensing (CLARS). These activities have contributed significantly to the calibration and validation of satellite missions like TES, OCO, OMI, and SAGE, helped advance remote sensing technologies, and informed local air quality metrics.

        Stan was not only a brilliant scientist but a deeply respected mentor and leader. He guided 40 postdocs at JPL, 14 graduate students at Caltech, and 14 undergraduate researchers. At JPL, he held key leadership roles including Supervisor of the Laboratory Studies and Modeling Group, Chief Engineer and Acting Chief Technologist in the Science Division, and Senior Research Scientist.  Those of us lucky enough to be fostered by Stan in this capacity will always remember his kindness first approach and steadfast resolve in the face of challenges.

        Stan’s contributions were recognized with numerous honors, including two NASA Exceptional Achievement Medals, a NASA Exceptional Service Medal, and elected as a fellow for both the American Geophysical Union (2021) and the American Association for the Advancement of Science (2024). Although the announcement of his AAAS Fellowship came posthumously, he was informed of this honor before his passing.

        Stan was a rare combination of scientific brilliance, humility, and kindness. He was not only a leader in his field, but also a generous collaborator and cherished mentor. His loss is profoundly felt by the scientific community and by all who had the privilege of working with him. His legacy, however, will endure in those he mentored and the substantial contributions he made to scientific knowledge. 

        Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site

        4 June 2025 at 22:14

        3 min read

        Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site

        A grayscale photo looking down at the Martian surface, showing very rough terrain in front of the Curiosity rover. Light gray, gravel-covered rocks are in bright sunlight in the upper half of the frame. A shadow silhouette of the rover covers much of the rest of the image, from the center toward the lower right corner. Portions of the rover itself are sunlit and visible at the bottom and left side of the image.
        NASA’s Mars rover Curiosity acquired this image of a portion of its workspace, full of interesting but not drillable bedrock, using its Left Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:24 UTC.
        NASA/JPL-Caltech

        Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center

        Earth planning date: Monday, June 2, 2025

        Now that Curiosity has spent a few sols collecting close-up measurements of the rocks in the outer edge of the boxwork-forming geologic unit, the team has decided that it’s time to collect a drill sample. The geochemical measurements by APXS and ChemCam have shown changes since we crossed over from the previous layered sulfate unit, but we can’t figure out the mineralogy from those data alone. As we’ve often seen before on Mars, the same chemical elements can crystallize into a number of different mineral assemblages. That’s even more the case in sedimentary rocks such as we are driving through, in which different grains in our rocks may have formed in different times and places. This also means that when we do get our mineral data, those minerals will tell us a lot about the history of these new-to-us rocks.

        On board Curiosity, that mineral analysis is the job of the CheMin instrument, which uses X-ray diffraction to identify minerals. CheMin shines a narrow X-ray beam through a powdered sample in order to generate the diffraction pattern, which means that it needs a drilled sample. So the team today was busy looking for a drillable spot. Unfortunately the rover’s drill reach from today’s parking spot included only rocks that were too fractured or had too much debris sitting on them to be considered likely to produce a good drilled sample, so we will have to move, or “bump,” at least one more time before progressing to the drill preload test, which is the next step in drilling. 

        In the meantime, we are taking more measurements to understand the range of compositions that can be found in this rock layer. Dust removal (DRT) + APXS + LIBS + MAHLI were all planned for target “Holcomb Valley,” while a short distance away a second DRT/APXS/MAHLI measurement was planned for “Santa Ysabel Valley” and in another direction, a second LIBS for “Stough Saddle.” One long-distance ChemCam remote imaging mosaic was planned to cover a boxwork structure off in the distance. Mastcam had a relatively light day of imaging, with just a couple of small mosaics covering a nearby trough feature, and providing context for the RMI of the boxwork structure, in addition to documenting the two LIBS targets. The modern Mars environment was also recorded with a couple of movies to look for dust-devil activity, a measurement of atmospheric opacity, and a pair of suprahorizon observations to look for clouds, plus the usual passive observations by DAN and REMS to monitor the neutron environment, temperature, and humidity.

        I’ll be on rover planning Wednesday as Geology and Mineralogy Science Theme Lead and looking forward to what we find — hopefully some drillable boxwork-unit bedrock!

        Share

        Details

        Last Updated
        Jun 04, 2025

        Related Terms

        Received before yesterdayNASA

        The Next Full Moon is the Snow Moon

        13 February 2025 at 15:41
        23 Min Read

        The Next Full Moon is the Snow Moon

        A park ranger stands on a snowy vista pointing to a full moon in the background.
        A full moon hike at Bryce Canyon National Park.
        Credits: National Park Service

        The next full moon will be Wednesday morning, Feb. 12, 2025, appearing opposite the Sun (in Earth longitude) at 8:53 a.m. EST. The Moon will appear full for about three days around this time, from Monday night into early Thursday evening. The bright star Regulus will appear near the full moon.

        An illustrated sky chart shows the evening sky in mid-February, facing south around 8pm. Jupiter is marked as a bright white dot near the top, right of center. Mars is a slightly smaller dot at top, left of center. Across the center of the chart are the winter constellations Orion, Taurus, and Gemini, plus the bright star Sirius.
        Sky chart showing Jupiter and Mars high overhead after nightfall in February.
        NASA/JPL-Caltech

        The Maine Farmers’ Almanac began publishing Native American names for full moons in the 1930s, and these names are now widely known and used. According to this almanac, as the full moon in February, the tribes of the northeastern U.S. called this the Snow Moon or the Storm Moon because of the heavy snows in this season. Bad weather and heavy snowstorms made hunting difficult, so this Moon was also called the Hunger Moon. NOAA monthly averages for the Washington, D.C. area airports from 1991 to 2020 show January and February nearly tied as the snowiest months of the year (with February one tenth of an inch ahead).

        Here are the other celestial events between now and the full moon after next with times and angles based on the location of NASA Headquarters in Washington:

        As winter continues in the Northern Hemisphere, the daily periods of sunlight continue to lengthen. Wednesday, Feb. 12 (the day of the full moon), morning twilight will begin at 6:04 a.m. EST, sunrise will be at 7:03 a.m., solar noon will be at 12:23 p.m. when the Sun will reach its maximum altitude of 37.7 degrees, sunset will be at 5:43 p.m., and evening twilight will end at 6:41 p.m.

        Daylight Saving Time starts on the second Sunday in March for much of the United States. The day before, Saturday, March 8, morning twilight will begin at 5:32 a.m., sunrise will be at 6:30 a.m., solar noon will be at 12:19 p.m. when the Sun will reach its maximum altitude of 46.5 degrees, sunset will be at 6:08 p.m., and evening twilight will end at 7:06 p.m. Early on Sunday morning, March 9, the clock will “spring forward” from 1:59:59 a.m. EST to 3:00:00 a.m. EDT. Sunday, March 9, morning twilight will begin at 6:30 a.m., sunrise will be at 7:28 a.m., solar noon will be at 1:19 p.m. when the Sun will reach its maximum altitude of 46.9 degrees, sunset will be at 7:09 p.m., and evening twilight will end at 8:07 p.m. By Friday, March 14 (the day of the full moon after next), morning twilight will begin at 6:23 a.m., sunrise will be at 7:20 a.m., solar noon will be at 1:17 p.m. when the Sun will reach its maximum altitude of 48.9 degrees, sunset will be at 7:14 p.m., and evening twilight will end at 8:12 p.m.

        This should still be a good time for planet watching, especially with a backyard telescope. On the evening of the March 14, the full moon, Venus, Jupiter, Mars, Saturn, and Uranus will all be in the evening sky. The brightest of the planets, Venus, will be 28 degrees above the west-southwestern horizon, appearing as a 29% illuminated crescent through a telescope. Second in brightness will be Jupiter at 71 degrees above the south-southeastern horizon. With a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. Jupiter was at its closest and brightest in early December. Third in brightness will be Mars at 48 degrees above the eastern horizon. Mars was at its closest and brightest for the year just a month ago. Fourth in brightness (and appearing below Venus) will be Saturn at 11 degrees above the west-southwestern horizon. With a telescope you may be able to see Saturn’s rings and its bright moon Titan. The rings will appear very thin and will be edge-on to Earth in March 2025. Saturn was at its closest and brightest in early September. The planet Uranus will be too dim to see without a telescope when the Moon is in the sky, but later in the lunar cycle, if you are in a very dark area with clear skies and no interference from moonlight, it will still be brighter than the faintest visible stars. Uranus was at its closest and brightest in mid-November.

        During this lunar cycle, these planets, along with the background of stars, will rotate westward by about a degree each night around the pole star Polaris. Venus, named after the Roman goddess of love, will reach its brightest around Feb. 14, making this a special Valentine’s Day. After about Feb. 17, the planet Mercury, shining brighter than Mars, will begin emerging from the glow of dusk about 30 minutes after sunset. Feb. 24 will be the first evening Mercury will be above the western horizon as twilight ends, while Feb. 25 will be the last evening Saturn will be above the western horizon as twilight ends, making these the only two evenings that all of the visible planets will be in the sky after twilight ends. For a few more evenings after this, Saturn should still be visible in the glow of dusk during twilight. Around March 8 or 9, Mercury will have dimmed to the same brightness as Mars, making Mars the third brightest visible planet again. By the evening of March 13 (the evening of the night of the full moon after next), as twilight ends, Venus and Mercury will appear low on the western horizon, making them difficult targets for a backyard telescope, while Jupiter and Mars (and Uranus) will appear high overhead and much easier to view.

        Comets and Meteor Showers

        No meteor shower peaks are predicted during this lunar cycle. No comets are expected to be visible without a telescope for Northern Hemisphere viewers. Southern Hemisphere viewers may still be able to use a telescope to see comet C/2024 G3 (ATLAS), although it is fading as it moves away from Earth and the Sun, and some recent reports suggest that it might be breaking apart and disappearing from view.

        Evening Sky Highlights

        On the evening of Wednesday, Feb. 12 (the evening of the full moon), as twilight ends at 6:41 p.m. EST, the rising Moon will be 7 degrees above the east-northeastern horizon with the bright star Regulus 2 degrees to the right. The brightest planet in the sky will be Venus at 28 degrees above the west-southwestern horizon, appearing as a crescent through a telescope. Next in brightness will be Jupiter at 71 degrees above the south-southeastern horizon. Third in brightness will be Mars at 48 degrees above the eastern horizon. The fourth brightest planet will be Saturn at 11 degrees above the west-southwestern horizon. Uranus, on the edge of what is visible under extremely clear, dark skies, will be 68 degrees above the south-southwestern horizon. The bright star closest to overhead will be Capella at 75 degrees above the northeastern horizon. Capella is the 6th brightest star in our night sky and the brightest star in the constellation Auriga (the charioteer). Although we see Capella as a single star, it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 light years from us.

        Also high in the sky will be the constellation Orion, easily identifiable because of the three stars that form Orion’s Belt. This time of year, we see many bright stars in the sky at evening twilight, with bright stars scattered from the south-southeast toward the northwest. We see more stars in this direction because we are looking toward the Local Arm of our home galaxy (also called the Orion Arm, Orion-Cygnus Arm, or Orion Bridge). This arm is about 3,500 light years across and 10,000 light years long. Some of the bright stars from this arm that we see are the three stars of Orion’s Belt, and Rigel (860 light years from Earth), Betelgeuse (548 light years), Polaris (about 400 light years), and Deneb (about 2,600 light years).

        Facing toward the south from the Northern Hemisphere, to the upper left of Orion’s Belt is the bright star Betelgeuse (be careful not to say this name three times). About the same distance to the lower right is the bright star Rigel. Orion’s belt appears to point down and to the left about seven belt lengths to the bright star Sirius, the brightest star in the night sky. Below Sirius is the bright star Adhara. To the upper right of Orion’s Belt (at about the same distance from Orion as Sirius) is the bright star Aldebaran. Nearly overhead is the bright star Capella. To the left (east) of Betelgeuse is the bright star Procyon. The two stars above Procyon are Castor and Pollux, the twin stars of the constellation Gemini (Pollux is the brighter of the two). The bright star Regulus appears farther to the left (east) of Pollux near the eastern horizon. For now, Mars is near Castor and Pollux, while Jupiter is near Aldebaran, but these are planets (from the Greek word for wanderers) and continue to shift relative to the background of the stars. Very few places on the East Coast are dark enough to see the Milky Way (our home galaxy), but if you could see it, it would appear to stretch overhead from the southeast to the northwest. Since we are seeing our galaxy from the inside, the combined light from its 100 to 400 billion stars make it appear as a band surrounding Earth.

        As this lunar cycle progresses, the planets and the background of stars will rotate westward by about a degree each evening around the pole star Polaris. The brightest of the planets, Venus, will reach its brightest around Valentine’s Day, Feb. 14.  Bright Mercury will begin emerging from the glow of dusk around Feb. 17 and will be above the horizon as twilight ends beginning Feb. 24, initiating a brief period when all the visible planets will be in the evening sky at the same time that will end after Feb. 25, the last evening Saturn will be above the horizon as twilight ends. Feb. 24 and 25 will also be the two evenings when Mercury and Saturn will appear closest together.

        The waxing crescent “Wet” or “Cheshire” Moon will appear near Mercury on Feb. 28 and Venus on March 1, appearing like a bowl or a smile above the horizon. The waxing gibbous Moon will appear near Mars and Pollux on March 8. Mercury will reach its highest above the horizon as twilight ends on March 8 but will be fading, appearing fainter than Mars. The nearly full moon will appear near Regulus on March 11. Venus and Mercury will be closest to each other on March 12.

        By the evening of Thursday, March 13 (the evening of the night of the full moon after next), as twilight ends at 8:11 p.m. EDT, the rising Moon will be 14 degrees above the eastern horizon. The brightest planet in the sky will be Venus at 4 degrees above the west-southwestern horizon, appearing as a thin, 4% illuminated crescent through a telescope. Next in brightness will be Jupiter at 62 degrees above the west-southwestern horizon. Third in brightness will be Mars at 72 degrees above the southeastern horizon. Mercury, to the left of Venus, will also be 4 degrees above the western horizon. Uranus, on the edge of what is visible under extremely clear, moonless dark skies, will be 45 degrees above the western horizon. The bright star closest to overhead will still be Capella at 75 degrees above the northwestern horizon.

        Morning Sky Highlights

        On the morning of Wednesday, Feb. 12, 2025 (the morning of the night of the full moon), as twilight begins at 6:04 a.m. EST, the setting full moon will be 13 degrees above the western horizon. No planets will appear in the sky. The bright star appearing closest to overhead will be Arcturus at 65 degrees above the southeastern horizon. Arcturus is the brightest star in the constellation Boötes (the herdsman or plowman) and the 4th brightest star in our night sky. It is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. One way to identify Arcturus in the night sky is to start at the Big Dipper, then follow the arc of the dipper’s handle as it “arcs toward Arcturus.”

        As this lunar cycle progresses the background of stars will rotate westward by about a degree each morning around the pole star Polaris. The waning Moon will appear near Regulus on Feb. 13, Spica on Feb. 17, and Antares on Feb. 21. The nearly full moon will appear near Regulus on March 12.

        By the morning of Friday, March 14 (the morning of the full moon after next), as twilight begins at 6:23 a.m. EDT, the setting full moon will be 12 degrees above the western horizon. No visible planets will appear in the sky. The bright star closest to overhead will be Vega at 68 degrees above the eastern horizon. Vega is the 5th brightest star in our night sky and the brightest star in the constellation Lyra (the lyre). Vega is one of the three bright stars of the “Summer Triangle” (along with Deneb and Altair). It is about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.

        Detailed Daily Guide

        Here is a day-by-day listing of celestial events between now and the full moon on March 14, 2025. The times and angles are based on the location of NASA Headquarters in Washington, and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app that is set up for your location or a star-watching guide from a local observatory, news outlet, or astronomy club.

        Sunday morning, Feb. 9 Mars will appear to the upper left of the waxing gibbous Moon. In the early morning at about 2 a.m. EST, Mars will be 8 degrees from the Moon. By the time the Moon sets on the northwestern horizon at 5:58 a.m., Mars will have shifted to 6 degrees from the Moon. For parts of Asia and Northern Europe the Moon will pass in front of Mars. Also, Sunday morning, the planet Mercury will be passing on the far side of the Sun as seen from Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of dusk on the west-southwestern horizon after about Feb. 17 (depending upon viewing conditions).

        Sunday evening into Monday morning, Feb. 9 – 10 The waxing gibbous Moon will have shifted to the other side of the Mars (having passed in front of Mars in the afternoon when we could not see them). As evening twilight ends (at 6:38 p.m. EST) the Moon will be between Mars and the bright star Pollux, with Mars 3 degrees to the upper right and Pollux 3 degrees to the lower left. By the time the Moon reaches its highest for the night at 10:27 p.m., Mars will be 4.5 degrees to the right of the Moon and Pollux 2.5 degrees to the upper left of the Moon. Mars will set first on the northwestern horizon Monday morning at 5:44 a.m., just 22 minutes before morning twilight begins at 6:06 a.m.

        Wednesday morning, Feb. 12 As mentioned above, the full moon will be Wednesday morning, Feb. 12, at 8:53 a.m. EST. This will be on Thursday morning from Australian Central Time eastward to the international date line in the mid-Pacific. The Moon will appear full for about three days around this time, from Monday night into early Thursday evening.

        Wednesday evening into Thursday morning, Feb. 12 to 13 The bright star Regulus will appear near the full moon. As evening twilight ends at 6:41 p.m. EST, Regulus will be less than 2 degrees to the right of the Moon, very near its closest. By the time the Moon reaches its highest for the night at 12:55 a.m., Regulus will be 3 degrees to the right. As morning twilight begins at 6:03 a.m., Regulus will be 5 degrees to the lower right of the Moon.

        Friday evening, Feb. 14 Venus, the brightest of the planets, will be near its brightest for the year (based on a geometric estimate called greatest brilliancy). As evening twilight ends at 6:43 p.m. EST, Venus will be 28 degrees above the west-southwestern horizon. Venus will set on the western horizon about 2.5 hours later at 9:09 p.m. Having Venus, named after the Roman goddess of love, shining at its brightest on this evening will make for a special Valentine’s Day!

        Sunday night into Monday morning Feb. 16 to 17 Bright star Spica will appear near the waning gibbous Moon. As Spica rises on the east-southeastern horizon at 10:19 p.m. EST, it will be 3.5 degrees to the lower left of the Moon. Throughout the night Spica will appear to rotate clockwise around the Moon. As the Moon reaches its highest at 3:37 a.m., Spica will be 2 degrees to the left of the Moon. By the time morning twilight begins at 5:58 a.m., Spica will be a little more than a degree above the Moon.

        Monday evening, Feb. 17 This will be the first evening Mercury will be above the west-southwestern horizon 30 minutes after sunset, a rough approximation of when it might start emerging from the glow of dusk before evening twilight ends. Increasing the likelihood it will be visible, Mercury will be brighter than Mars, but not as bright as Jupiter.

        Monday evening, Feb. 17 At 8:06 p.m. EST, the Moon will be at apogee, its farthest from Earth for this orbit.

        Midday on Thursday, Feb. 20 The waning Moon will appear half full as it reaches its last quarter at 12:32 p.m. EST.

        Friday morning, Feb. 21 The bright star Antares will appear quite near the waning crescent Moon. As the Moon rises on the southeastern horizon at 2:05 a.m. EST, Antares will be one degree to the upper left. Antares will appear to rotate clockwise and shift away from the Moon as morning progresses. By the time morning twilight begins at 5:53 a.m., Antares will be 2 degrees to the upper right of the Moon. From the southern part of South America, the Moon will actually block Antares from view.

        Monday, Feb. 24 This will be the first evening Mercury will be above the western horizon as evening twilight ends at 6:54 p.m. EST, setting three minutes later at 6:57 p.m. This will be the first of two evenings when all the visible planets will be in the evening sky at the same time after twilight ends.

        This also will be the evening when Mercury and Saturn will appear nearest to each other, 1.6 degrees apart. To see them you will need a very clear view toward the western horizon and will likely have to look before evening twilight ends at 6:54 p.m. EST, as Mercury will set three minutes later at 6:57 p.m., and Saturn two minutes after Mercury at 6:59 p.m.

        Tuesday, Feb. 25 This will be the last evening Saturn will be above the western horizon as evening twilight ends at 6:55 p.m. EST, setting one minute later at 6:56 p.m. This will be the last of two evenings when all of the visible planets will be in the evening sky at the same time after twilight ends. Mercury and Saturn will appear almost as close together as the night before, with Mercury setting six minutes after Saturn at 7:02 p.m. Saturn, appearing about as bright as the star Pollux, may still be visible in the glow of dusk before evening twilight ends for a few evenings after this.

        Thursday evening, Feb. 27 At 7:45 p.m. EST will be the new Moon, when the Moon passes between Earth and the Sun and will not be visible from Earth.

        The day of, or the day after, the new Moon marks the start of the new month for most lunisolar calendars. The second month of the Chinese calendar starts on Friday, Feb. 28. Sundown on Feb. 28 also marks the start of Adar in the Hebrew calendar. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way (intended for civil and not religious purposes). This calendar predicts the holy month of Ramadan will start with sunset on Feb. 28, but because of Ramadan’s religious significance, it is one of four months in the Islamic year where the start of the month is updated based upon the actual sighting of the crescent Moon. Ramadan is honored as the month in which the Quran was revealed. Observing this annual month of charitable acts, prayer, and fasting from dawn to sunset is one of the Five Pillars of Islam.

        Friday evening, Feb. 28 As evening twilight ends at 6:58 p.m. EST, you may be able to see the thin, waxing crescent Moon barely above the western horizon. The Moon will set two minutes later at 7 p.m. Mercury will be 3.5 degrees above the Moon. For this and the next few evenings the waxing crescent Moon will appear most like an upward-facing bowl or a smile in the evening sky (for the Washington, D.C. area and similar latitudes, at least). This is called a “wet” or a “Cheshire” Moon. The term “wet Moon” appears to originate from Hawaiian mythology. It’s when the Moon appears like a bowl that could fill up with water. The time of year when this occurs as viewed from the latitudes of the Hawaiian Islands roughly corresponds with Kaelo the Water Bearer in Hawaiian astrology. As the year passes into summer, the crescent shape tilts, pouring out the water and causing the summer rains. The term “Cheshire Moon” is a reference to the smile of the Cheshire Cat in Lewis Carroll’s book “Alice’s Adventures in Wonderland.”

        Saturday afternoon, March 1 At 4:14 p.m. EST, the Moon will be at perigee, its closest to Earth for this orbit.

        Saturday evening, as evening twilight ends at 6:59 p.m. EST, the thin, waxing crescent Moon will be 13 degrees above the western horizon, with Venus 7 degrees to the upper right of the Moon. Mercury will appear about 10 degrees below the Moon. The Moon will set 76 minutes later at 8:15 p.m.

        Tuesday, March 4 This is Mardi Gras (Fat Tuesday), which marks the end of the Carnival season that began on January 6. Don’t forget to march forth on March Fourth!

        Thursday, March 6 The Moon will appear half-full as it reaches its first quarter at 11:32 a.m. EST.

        Saturday morning, March 8 Just after midnight, Mercury will reach its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation).

        Saturday evening, will be when Mercury will appear at its highest (6 degrees) above the western horizon as evening twilight ends at 7:06 p.m. EST. Mercury will set 34 minutes later at 7:40 p.m. This will also be the evening Mercury will have dimmed to the brightness as Mars, after which Mars will be the third brightest visible planet again.

        Also on Saturday evening into Sunday morning, March 8 to 9, Mars will appear near the waxing gibbous Moon with the bright star Pollux (the brighter of the twin stars in the constellation Gemini) nearby. As evening twilight ends at 7:06 p.m. EST, Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 6 degrees to the lower left. As the Moon reaches its highest for the night 1.25 hours later at 8:22 p.m., Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 5.5 degrees to the upper left. By the time Mars sets on the northwestern horizon at 4:53 a.m., it will be 4 degrees to the lower left of the Moon and Pollux will be 3 degrees above the Moon.

        Sunday morning, March 9 Daylight Saving Time begins. Don’t forget to reset your clocks (if they don’t automatically set themselves) as we “spring forward” to Daylight Saving Time! For much of the U.S., 2 to 3 a.m. on March 9, 2025, might be a good hour for magical or fictional events (as it doesn’t actually exist).

        Tuesday evening into Wednesday morning, March 11 to 12 The bright star Regulus will appear close to the nearly full moon. As evening twilight ends at 8:09 p.m. EDT, Regulus will be 4 degrees to the lower right of the Moon. When the Moon reaches its highest for the night at 11:52 p.m., Regulus will be 3 degrees to the lower right. By the time morning twilight begins at 6:26 a.m., Regulus will be about one degree below the Moon.

        Wednesday morning, March 12 Saturn will be passing on the far side of the Sun as seen from Earth, called a conjunction. Because Saturn orbits outside of the orbit of Earth it will be shifting from the evening sky to the morning sky. Saturn will begin emerging from the glow of dawn on the eastern horizon in early April (depending upon viewing conditions).

        Wednesday evening, March 12 The planets Venus and Mercury will appear closest to each other low on the western horizon, 5.5 degrees apart. They will be about 5 degrees above the horizon as evening twilight ends at 8:10 p.m. EDT, and Mercury will set first 27 minutes later at 8:37 p.m.

        Friday morning, March 14: Full Moon After Next The full moon after next will be at 2:55 a.m. EDT. This will be on Thursday evening from Pacific Daylight Time and Mountain Standard Time westward to the international date line in the mid Pacific. The Moon will appear full for about three days around this time, from Wednesday evening into Saturday morning.

        Total Lunar Eclipse As the Moon passes opposite the Sun on March 14, it will move through Earth’s shadow, creating a total eclipse of the Moon. The Moon will begin entering the partial shadow Thursday night at 11:57 p.m., but the gradual dimming of the Moon will not be noticeable until it starts to enter the full shadow Friday morning at 1:09 a.m. The round shadow of Earth will gradually shift across the face of the Moon (from lower left to upper right) until the Moon is fully shaded beginning at 2:26 a.m.

        The period of full shadow, or total eclipse, will last about 65 minutes, reaching the greatest eclipse at 2:59 a.m. and ending at 3:31 a.m. Even though it will be in full shadow, the Moon will still be visible. The glow of all of the sunrises and sunsets on Earth will give the Moon a reddish-brown hue, sometimes called a “blood” Moon (although this name is also used for one of the full moons near the start of fall). From 3:31 until 4:48 a.m., the Moon will exit the full shadow of Earth, with the round shadow of Earth again shifting across the face of the Moon (from upper left to lower right). The Moon will leave the last of the partial shadow at 6 a.m. ending this eclipse. 

        Keep Exploring

        Discover More Topics From NASA

        Giving NASA’s CADRE a Hand

        13 February 2025 at 12:29
        Four people in white lab coats, face masks, and hair nets hold up a small, upside-down robotic rover by red handles inside a room with industrial equipment in the background.
        NASA/JPL-Caltech

        One of three small lunar rovers — part of a NASA technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration) — is prepared for shipping in a clean room on Jan. 29, 2025, at NASA’s Jet Propulsion Laboratory in Southern California. The project is designed to show that a group of robots can collaborate to gather data without receiving direct commands from mission controllers on Earth, paving the way for potential future multirobot missions. The autonomous rovers, plus a base station and camera system, will launch to the Moon aboard IM-3, Intuitive Machines’ third lunar delivery, which has a mission window that extends into early 2026, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The CADRE hardware was delivered from NASA JPL to Intuitive Machines on Feb. 9, 2025.

        Image credit: NASA/JPL-Caltech

        Tribal Library Co-Design STEM Space Workshop

        13 February 2025 at 12:15

        3 min read

        Tribal Library Co-Design STEM Space Workshop

        Christine Shupla and Claire Ratcliffe Adams, from the NASA Science Activation program’s NASA@ My Library project, facilitated a professional development Co-Design Space Science, Technology, Engineering, & Mathematics (STEM) Workshop for Tribal libraries on August 29, 2024, hosted at the New Mexico State Library. The workshop was planned with input from Cassandra Osterloh (the New Mexico State Library’s Tribal Libraries Program Coordinator), Teresa Naranjo and Charles Suazo (of the Santa Clara Pueblo Library) and Rexine Calvert (of the P’oe Tsawa Community Library). Evaluation surveys indicate that the workshop met or exceeded 100% of participants’ expectations, and that activities could be made culturally relevant by the participants. Based on input from tribal advisors, the focus topic was space science (although there was also significant interest in various Earth science and environmental topics and in engineering design). These advisors also suggested that the workshop focus on co-design to enable the workshop participants to share and consider ways to make the content and activities culturally-relevant.

        The team selected space STEM activities that could be done within library programs and that were within different categories:

        • Passive programming activities (which were available while participants were arriving)
        • Physically active activities
        • Engineering design activities
        • Art/Science, Technology, Engineering, Art, & Mathematics (STEAM) activities

        After each type of activity, participants discussed aspects of the activities that they liked, modifications to make the activity more culturally-relevant for their Tribal community, and other activities within that category.

        Throughout the workshop, Christine and Claire reiterated that the participants’ thoughts and input were critical—that they were the keepers of knowledge of their communities and that their voices were respected.

        One participant stated, “I like how the instructors were re-assuring throughout the session. Making sure everyone was comfortable and making it feel safe to share ideas.” Another, said, “I tend to not participate, but observe, because I’m not a scientist. It was awesome (feeling comfortable) to design too!”

        Sixteen of the participants filled out and returned evaluation surveys handed out at the close of the workshop. Just over 50% of those survey responses indicated that the workshop exceeded expectations; all others indicated that it met expectations. Participants also indicated that the activities themselves enabled participants to co-design and make them culturally relevant; this likely is in reference to the discussions held after each activity about ways to apply and revise them. The discussion after a crater-creation activity was particularly extensive: participants discussed replacing the materials with local materials and incorporating aspects of the local topography and even local art. Several participants expressed the desire for more workshops.

        The NASA@ My Library project is supported by NASA under cooperative agreement award number NNX16AE30A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

        Nine workshops participants conducting a workshop activity that included dropping balloons (a
        Workshop participants conducting the “Touchdown” activity, simulating insertion of a rover into an unknown environment.
        Christine Shupla

        Share

        Details

        Last Updated
        Feb 13, 2025
        Editor
        Earth Science Division Editorial Team

        NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients

        13 February 2025 at 10:27

        5 min read

        Preparations for Next Moonwalk Simulations Underway (and Underwater)

        Molecular clouds in the Milky Way galaxy
        NASA’s SPHEREx mission will survey the Milky Way galaxy looking for water ice and other key ingredients for life. In the search for these frozen compounds, the mission will focus on molecular clouds — collections of gas and dust in space — like this one imaged by the agency’s James Webb Space Telescope.
        NASA, ESA, CSA

        Where is all the water that may form oceans on distant planets and moons? The SPHEREx astrophysics mission will search the galaxy and take stock.

        Every living organism on Earth needs water to survive, so scientists searching for life outside our solar system, are often guided by the phrase “follow the water.” Scheduled to launch no earlier than Thursday, Feb. 27, NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) mission will help in that quest.

        After its ride aboard a SpaceX Falcon 9 from Vandenberg Space Force base in California, the observatory will search for water, carbon dioxide, carbon monoxide, and other key ingredients for life frozen on the surface of interstellar dust grains in the clouds of gas and dust where planets and stars eventually form.

        While there are no oceans or lakes floating freely in space, scientists think these reservoirs of ice, bound to small dust grains, are where most of the water in our universe forms and resides. Additionally, the water in Earth’s oceans as well as those of other planets and moons in our galaxy likely originated in such locations.

        Perseus Molecular Cloud, located about 1,000 light-years from Earth
        The Perseus Molecular Cloud, located about 1,000 light-years from Earth, was imaged by NASA’s retired Spitzer Space Telescope. NASA’s SPHEREx mission will search the galaxy for water ice and other frozen compounds in clouds of gas and dust in space like this one.
        NASA/JPL-Caltech

        The mission will focus on massive regions of gas and dust called molecular clouds. Within those, SPHEREx will also look at some newly formed stars and the disks of material around them from which new planets are born.

        Although space telescopes such as NASA’s James Webb and retired Spitzer have detected water, carbon dioxide, carbon monoxide, and other compounds in hundreds of targets, the SPHEREx observatory is the first to be uniquely equipped to conduct a large-scale survey of the galaxy in search of water ice and other frozen compounds.

        Rather than taking 2D images of a target like a star, SPHEREx will gather 3D data along its line of sight. That enables scientists to see the amount of ice present in a molecular cloud and observe how the composition of the ices throughout the cloud changes in different environments.

        By making more than 9 million of these line-of-sight observations and creating the largest-ever survey of these materials, the mission will help scientists better understand how these compounds form on dust grains and how different environments can influence their abundance.  

        Tip of the Iceberg

        It makes sense that the composition of planets and stars would reflect the molecular clouds they formed in. However, researchers are still working to confirm the specifics of the planet formation process, and the universe doesn’t always match scientists’ expectations.

        For example, a NASA mission launched in 1998, the Submillimeter Wave Astronomy Satellite (SWAS), surveyed the galaxy for water in gas form — including in molecular clouds — but found far less than expected.

        BAE Systems employees work on NASA’s SPHEREx observatory in the Astrotech Space Operations facility
        BAE Systems employees work on NASA’s SPHEREx observatory in the Astrotech Space Operations facility at Vandenberg Space Force Base in California on Jan. 16. Targeting a Feb. 27 launch, the mission will map the entire sky in infrared light.
        NASA/JPL-Caltech

        “This puzzled us for a while,” said Gary Melnick, a senior astronomer at the Center for Astrophysics | Harvard & Smithsonian and a member of the SPHEREx science team. “We eventually realized that SWAS had detected gaseous water in thin layers near the surface of molecular clouds, suggesting that there might be a lot more water inside the clouds, locked up as ice.”

        The mission team’s hypothesis also made sense because SWAS detected less oxygen gas (two oxygen atoms bound together) than expected. They concluded that the oxygen atoms were sticking to interstellar dust grains, and were then joined by hydrogen atoms, forming water. Later research confirmed this. What’s more, the clouds shield molecules from cosmic radiation that would otherwise break those compounds apart. As a result, water ice and other materials stored deep in a cloud’s interior are protected.

        As starlight passes through a molecular cloud, molecules like water and carbon dioxide block certain wavelengths of light, creating a distinct signature that SPHEREx and other missions like Webb can identify using a technique called absorption spectroscopy.

        In addition to providing a more detailed accounting of the abundance of these frozen compounds, SPHEREx will help researchers answer questions including how deep into molecular clouds ice begins to form, how the abundance of water and other ices changes with the density of a molecular cloud, and how that abundance changes once a star forms.

        Powerful Partnerships

        As a survey telescope, SPHEREx is designed to study large portions of the sky relatively quickly, and its results can be used in conjunction with data from targeted telescopes like Webb, which observe a significantly smaller area but can see their targets in greater detail.

        “If SPHEREx discovers a particularly intriguing location, Webb can study that target with higher spectral resolving power and in wavelengths that SPHEREx cannot detect,” said Melnick. “These two telescopes could form a highly effective partnership.”

        More About SPHEREx

        SPHEREx is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA/IPAC Infrared Science Archive.

        For more information about the SPHEREx mission visit:

        https://www.jpl.nasa.gov/missions/spherex/

        News Media Contact

        Calla Cofield
        Jet Propulsion Laboratory, Pasadena, Calif.
        626-808-2469
        calla.e.cofield@jpl.nasa.gov

        2025-020

        In the Starlight: Tristan McKnight Brings NASA’s Historic Moments to Life  

        13 February 2025 at 09:52

        For more than a decade, Tristan McKnight has been a driving force behind some of NASA’s most iconic events, orchestrating the behind-the-scenes magic that brings each historic moment to life while sharing the agency’s advancements with the public. 

        As a multimedia producer on the audiovisual team at Johnson Space Center in Houston, McKnight produces and directs live broadcasts and manages event planning, coordination, and execution. From overseeing resources, mitigating risks, and communicating with stakeholders, he ensures every detail aligns seamlessly.  

        Professional headshot of a man wearing a dark suit and tie, smiling against a background featuring the United States flag and a NASA emblem.
        Official portrait of Tristan McKnight.
        NASA/Josh Valcarcel

        McKnight has played an integral role in the audiovisual team’s coverage of major events including the Artemis II crew announcement, where NASA revealed the astronauts who will venture around the Moon and back, to Johnson’s 2023 Open House, which celebrated the agency’s 65th anniversary and the 25th anniversary of the International Space Station’s operations. These achievements highlight key milestones in human space exploration.  

        A standout achievement was contributing to the Dorothy Vaughan Center in Honor of the Women of Apollo naming ceremony, held on the eve of the 55th anniversary of the Apollo 11 Moon landing. The event honored the unsung heroes who made humanity’s first steps on the Moon possible. 

        The team’s dedication and passion are a testament to their commitment to sharing NASA’s legacy with the world. 

        “Not only have these events been impactful to Johnson, but they have also resonated across the entire agency,” McKnight said. “That is what I’m most proud of!” 

        Man wearing a black NASA polo shirt, smiling and holding a colorful poster titled ’The Color of Space.’
        Tristan McKnight at the 45th Annual Original Martin Luther King Jr. Day Parade in downtown Houston.
        NASA/James Blair

        One of McKnight’s most memorable events was the 2023 “Back in the Saddle,” an annual tradition designed to refocus Johnson’s workforce at the start of a new year and renew the center’s commitment to safety and mission excellence. McKnight recalled how the speaker transformed Johnson’s Teague Auditorium into a venue filled with drum kits, inspiring messages, and lighting displays. Each audience member, drumsticks in hand, participated in a lesson on teamwork and synchronization to create a metaphor for working in harmony toward a shared goal. 

        Like many high-achieving professionals. McKnight has faced moments of self-doubt. Then he realized that he is exactly where he is supposed to be. “As I settled into my role, I recognized that my contributions matter and simply being true to who I am adds value to the Johnson community,” he said.  

        Tristan McKnight (right) receives a Group Special Act Award from Johnson Space Center Director Vanessa Wyche for his contributions to the Dorothy Vaughn in Honor of the Women of Apollo naming ceremony.
        NASA

        Each day brings its own set of challenges, ranging from minor issues like communication gaps and scheduling conflicts to major obstacles like technology failures. One of McKnight’s most valuable lessons is recognizing that there is no one-size-fits-all solution, and each situation requires a thoughtful analysis. 

        McKnight understands the importance of the “check-and double-check,” a philosophy he considers crucial when working with technology. “Taking the extra time to do your due diligence, or even having someone else take a look, can make all the difference,” he said. 

        “The challenges I’ve faced helped me grow as a problem solver and taught me valuable lessons on resilience and adaptability in the workplace,” he said. McKnight approaches obstacles with a level head, focusing on effective solutions rather than dwelling on the problem. 

        Tristan McKnight (left) with his daughter Lydia McKnight and Johnson’s External Relations Director Arturo Sanchez at the 2024 Bring Your Youth To Work Day.
        NASA/Helen Arase Vargas

        As humanity looks to the stars, McKnight is energized about the future of exploration, particularly advancements in spacesuit and rocket technology that will enable us to travel farther, faster, and safer than ever before. His work, though grounded on Earth, helps create the inspiration that fuels these bold endeavors. 

        “My hope for the next generation is that they dive deeper into their curiosity—exploring not only the world around them but also the Moon, planets, and beyond,” he said. “I also hope they carry forward the spirit of resilience and a commitment to making the world a better place for all.” 

        Headquarters and Center Chief Counsel Contacts

        By:NASA
        13 February 2025 at 09:27

        Headquarters

        Centers

        • Chief Counsel, Ames Research Center
          Dan Hymer (Acting)

        • Chief Counsel, Armstrong Flight Research Center
          Brett Swanson

        • Chief Counsel, Glenn Research Center
          Callista M. Puchmeyer

        • Chief Counsel, Goddard Space Flight Center
          Dave G. Barrett

        • Chief Counsel, Johnson Space Center
          Randall T. Suratt (Acting)

        • Chief Counsel, Kennedy Space Center
          Alex Vinson

        • Chief Counsel, Langley Research Center
          Andrea Z. Warmbier

        • Chief Counsel, Marshall Space Flight Center
          Pam A. Bourque

        • Chief Counsel, NASA Management Office at JPL
          James T. Mahoney

        • Chief Counsel, NASA Shared Service Center
          Ron Bald

        • Chief Counsel, NASA Stennis Space Center
          Ron Bald

        NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response

        13 February 2025 at 16:01
        5 Min Read

        NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response

        Brayden Chamberlain, UAS Pilot in Command, performs pre-flight checks on the NASA Alta X uncrewed aerial system (UAS) during NASA FireSense’s uncrewed aerial system (UAS) technology demonstration in Missoula, Montana.
        Pilot in command Brayden Chamberlain performs pre-flight checks on the NASA Alta X quadcopter during the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula.
        Credits: NASA ARC/Milan Loiacono

        In Aug. 2024, a team of NASA researchers and partners gathered in Missoula, Montana to test new drone-based technology for localized forecasting, or micrometeorology. Researchers attached wind sensors to a drone, NASA’s Alta X quadcopter, aiming to provide precise and sustainable meteorological data to help predict fire behavior.

        Wildfires are increasing in number and severity around the world, including the United States, and wind is a major factor. It leads to unexpected and unpredictable fire growth, public threats, and fire fatalities, making micrometeorology a very effective tool to combat fire.

        This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense uncrewed aerial system (UAS) technology demonstration in Missoula, Montana. Mounted on top of the drone is a unique infrastructure designed at NASA Langley to carry a radiosonde and an anemometer – two sensors that measure wind speed and direction – into the sky. On the ground, UAS Pilot in Command Brayden Chamberlain performs final pre-flight checks.
        This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense UAS technology demonstration in Missoula. Mounted on top of the drone is a unique infrastructure designed at NASA’s Langley Research Center in Hampton,Virginia, to carry sensors that measure wind speed and direction into the sky. On the ground, UAS pilot in command Brayden Chamberlain performs final pre-flight checks.
        NASA/Milan Loiacono

        The campaign was run by NASA’s FireSense project, focused on addressing challenges in wildland fire management by putting NASA science and technology in the hands of operational agencies.

        “Ensuring that the new technology will be easily adoptable by operational agencies such as the U.S. Forest Service and the National Weather Service was another primary goal of the campaign,” said Jacquelyn Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley.

        The FireSense team chose the Alta X drone because the U.S. Forest Service already has a fleet of the quadcopters and trained drone pilots, which could make integrating the needed sensors – and the accompanying infrastructure – much easier and more cost-effective for the agency.

        UAS Pilot in Command Brayden Chamberlain flashes a ‘good to go’ signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff.
        The UAS pilot in command, Brayden Chamberlain, flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff. Behind Chamberlain, the custom structure attached to the quadcopter holds a radiosonde (small white box) and an anemometer (hidden from view), which will collect data on wind speed and direction, humidity, temperature, and pressure.
        NASA/Milan Loiacono

        The choice of the two sensors for the drone’s payload was also driven by their adoptability.

        The first, called a radiosonde, measures wind direction and speed, humidity, temperature, and pressure, and is used daily by the National Weather Service. The other sensor, an anemometer, measures wind speed and direction, and is used at weather stations and airports around the world.

        Two images sit side by side. On the left, a small white box with a silver antenna coming out the top and a black antenna coming out the bottom sits in a black structure. On the right, a silver cylinder protrudes from a black base, with two silver, interlocking rings forming a sphere on top. In the back of both photos is a green field.
        The two sensors mounted on the NASA Alta X quadcopter are a radiosonde (left) and an anemometer (right), which measure wind speed and direction. The FireSense teams hopes that by giving them wings, researchers can enable micrometeorology to better predict fire and smoke behavior. 
        NASA/Milan Loiacono

        “Anemometers are everywhere, but are usually stationary,” said Robert McSwain, the FireSense uncrewed aerial system (UAS) lead, based at NASA’s Langley Research Center in Hampton, Virginia. “We are taking a sensor type that is already used all over the world, and giving it wings.”

        Anemometers are everywhere, but are usually stationary. We are taking a sensor type that is already used all over the world, and giving it wings.

        Robert Mcswain

        Robert Mcswain

        FireSense Uncrewed Aerial System (UAS) Lead

        Both sensors create datasets that are already familiar to meteorologists worldwide, which opens up the potential applications of the platform.

        Current Forecasting Methods: Weather Balloons

        Traditionally, global weather forecasting data is gathered by attaching a radiosonde to a weather balloon and releasing it into the air. This system works well for regional weather forecasts. But the rapidly changing environment of wildland fire requires more recurrent, pinpointed forecasts to accurately predict fire behavior. It’s the perfect niche for a drone.

        Two photos sit side by side. on the left, three male college students work on a large white balloon about three feet in diameter: one is kneeling with a large metal gas canister, the middle student holds the balloon up, and the third student holds a small white instrument attached to the balloon via string. On the right, the same large white balloon drifts into the sky, which is medium blue and mottled with gray clouds.
        Left: Steven Stratham (right) attaches a radiosonde to the string of a weather balloon as teammates Travis Christopher (left) and Danny Johnson (center) prepare the balloon for launch. This team of three from Salish Kootenai College is one of many college teams across the nation trained to prepare and launch weather balloons.
        Right: One of these weather balloons lifts into the sky, with the radiosonde visible at the end of the string.
        NASA/Milan Loiacono

        “These drones are not meant to replace the weather balloons,” said Jennifer Fowler, FireSense’s project manager at Langley. “The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.”

        The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.

        Jennifer Fowler

        Jennifer Fowler

        FireSense Project Manager

        Drones Provide Control, Repeat Testing, Sustainability

        Drones can be piloted to keep making measurements over a precise location – an on-site forecaster could fly one every couple of hours as conditions change – and gather timely data to help determine how weather will impact the direction and speed of a fire.

        Fire crews on the ground may need this information to make quick decisions about where to deploy firefighters and resources, draw fire lines, and protect nearby communities.

        A reusable platform, like a drone, also reduces the financial and environmental impact of forecasting flights. 

        “A weather balloon is going to be a one-off, and the attached sensor won’t be recovered,” Fowler said. “The instrumented drone, on the other hand, can be flown repeatedly.”

        The NASA Alta X quadcopter sits in a field in Missoula, Montana, outfitted with a structure engineered at Langley Research Center to carry a radiosonde and an anemometer into the air. In the background, two deer make their way across the field. The drone and its payload were part of the August 2024 FireSense campaign, which looked at the applicability of using controllable, repeatable airborne measurements to more accurately predict fire and smoke behavior.
        The NASA Alta X quadcopter sits in a field in Missoula, outfitted with a special structure to carry a radiosonde (sensor on the left) and an anemometer (sensor on the right) into the air. This structure was engineered at NASA’s Langley Research Center to ensure the sensors are far enough from the rotors to avoid interfering with the data collected, but without compromising the stability of the drone.
        NASA/Milan Loiacono

        The Missoula Campaign

        Before such technology can be sent out to a fire, it needs to be tested. That’s what the FireSense team did this summer.

        Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Montana Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smoke-impacted environment which, combined with the mountainous terrain, makes traditional forecasting methods difficult: a problem the FireSense team is working to solve.
        Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smokey environment which, combined with the mountainous terrain, made the area an ideal location to test FireSense’s new micrometeorology technology.
        NASA/Milan Loiacono

        McSwain described the conditions in Missoula as an “alignment of stars” for the research: the complex mountain terrain produces erratic, historically unpredictable winds, and the sparsity of monitoring instruments on the ground makes weather forecasting very difficult. During the three-day campaign, several fires burned nearby, which allowed researchers to test how the drones performed in smokey conditions.

        A drone team out of NASA Langley conducted eight data-collection flights in Missoula. Before each drone flight, student teams from the University of Idaho in Moscow, Idaho, and Salish Kootenai College in Pablo, Montana, launched a weather balloon carrying the same type of radiometer.

        Two images sit side by side. On the left, a team of six college students gather around a giant white weather balloon, some standing some sitting. On the ground around them are gear like a tarp, gas lines, and multiple gas canisters. In the photo on the right, two adult men hold a large quadcopter drone sideways between them, rotors akimbo.
        Left: Weather balloon teams from University of Idaho and Salish Kootenai College prepare a weather balloon for launch on the second day of the FireSense campaign in Missoula.
        Right: NASA Langley drone crew members Todd Ferrante (left) and Brayden Chamberlain (right) calibrate the internal sensors of the NASA Alta X quadcopter before its first test flight on Aug. 27, 2024.

        Once those data sets were created, they needed to be transformed into a usable format. Meteorologists are used to the numbers, but incident commanders on an active fire need to see the data in a form that allows them to quickly understand which conditions are changing, and how. That’s where data visualization partners come in. For the Missoula campaign, teams from MITRE, NVIDIA, and Esri joined NASA in the field.

        An early data visualization from the Esri team shows the flight path of different weather balloon launches from the first day of the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula, Montana. The paths are color coded by wind speed, from purple (low wind) to bright yellow (high wind).
        An early data visualization from the Esri team shows the flight paths of weather balloons launched on the first day of the FireSense UAS technology demonstration in Missoula. The paths are color-coded by wind speed, from purple (low wind) to bright yellow (high wind).
        NASA/Milan Loiacono

        Measurements from both the balloon and the drone platforms were immediately sent to the on-site data teams. The MITRE team, together with NVIDIA, tested high-resolution artificial intelligence meteorological models, while the Esri team created comprehensive visualizations of flight paths, temperatures, and wind speed and direction. These visual representations of the data make conclusions more immediately apparent to non-meteorologists.

        What’s Next?

        Development of drone capabilities for fire monitoring didn’t begin in Missoula, and it won’t end there.

        “This campaign leveraged almost a decade of research, development, engineering, and testing,” said McSwain. “We have built up a UAS flight capability that can now be used across NASA.”

        This campaign leveraged almost a decade of research, development, engineering, and testing. We have built up a UAS flight capability that can now be used across NASA.  

        Robert Mcswain

        Robert Mcswain

        FireSense Uncrewed Aerial System (UAS) Lead

        The NASA Alta X and its sensor payload will head to Alabama and Florida in spring 2025, incorporating improvements identified in Montana. There, the team will perform another technology demonstration with wildland fire managers from a different region.

        To view more photos from the FireSense campaign visit: https://nasa.gov/firesense

        The FireSense project is led by NASA Headquarters in Washington and sits within the Wildland Fires program, with the project office based at NASA Ames. The goal of FireSense is to transition Earth science and technological capabilities to operational wildland fire management agencies, to address challenges in U.S. wildland fire management before, during, and after a fire. 

        About the Author

        Milan Loiacono

        Milan Loiacono

        Science Communication Specialist

        Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

        Keep Exploring

        Discover More Topics From NASA

        How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon

        13 February 2025 at 15:21

        6 min read

        Preparations for Next Moonwalk Simulations Underway (and Underwater)

        NASA’s Lunar Trailblazer approaches the Moon as it enters its science orbit in this artist’s concept
        NASA’s Lunar Trailblazer approaches the Moon as it enters its science orbit in this artist’s concept. The small satellite will orbit about 60 miles (100 kilometers) above the lunar surface, producing the best-yet maps of water on the Moon.
        Lockheed Martin Space
        NASA’s Lunar Trailblazer spacecraft gets covered in anti-static wrap
        NASA’s Lunar Trailblazer spacecraft gets covered in anti-static wrap before being shipped from Lockheed Martin Space in Littleton, Colorado, to the agency’s Kennedy Space Center in Florida, where it arrived on Jan. 29.
        Lockheed Martin Space

        Before arriving at the Moon, the small satellite mission will use the gravity of the Sun, Earth, and Moon over several months to gradually line up for capture into lunar orbit.

        NASA’s Lunar Trailblazer arrived in Florida recently in advance of its launch later this month and has been integrated with a SpaceX Falcon 9 rocket. Shipped from Lockheed Martin Space in Littleton, Colorado, the small satellite is riding along on Intuitive Machines’ IM-2 launch — part of NASA’s CLPS (Commercial Lunar Payload Services) initiative — which is slated for no earlier than Thursday, Feb. 26, from Launch Complex 39A at the agency’s Kennedy Space Center.

        Approximately 48 minutes after launch, Lunar Trailblazer will separate from the rocket and begin its independent flight to the Moon. The small satellite will discover where the Moon’s water is, what form it is in, and how it changes over time, producing the best-yet maps of water on the lunar surface. Observations gathered during its two-year prime mission will contribute to the understanding of water cycles on airless bodies throughout the solar system while also supporting future human and robotic missions to the Moon by identifying where water is located.

        Key to achieving these goals are the spacecraft’s two state-of-the-art science instruments: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager. The HVM3 instrument was provided by NASA’s Jet Propulsion Laboratory in Southern California and LTM was built by the University of Oxford and funded by the UK Space Agency.

        Lunar Trailblazer’s voyage to the Moon
        Lunar Trailblazer’s voyage to the Moon will take between four and seven months, de-pending on the day it launches. This orbital diagram shows the low-energy transfer trajectory of the NASA mission should it launch on Feb. 26, the earliest date in its launch period.
        NASA/JPL-Caltech

        “The small team is international in scope, which is more typical of larger projects,” said Andy Klesh, Lunar Trailblazer’s project systems engineer at JPL. “And unlike the norm for small missions that may only have a very focused, singular purpose, Lunar Trailblazer has two high-fidelity instruments onboard. We are really punching above our weight.”

        Intricate Navigation

        Before it can use these instruments to collect science data, Lunar Trailblazer will for several months perform a series of Moon flybys, thruster bursts, and looping orbits. These highly choreographed maneuvers will eventually position the spacecraft so it can map the surface in great detail.

        Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide when its solar panels are fully deployed, Lunar Trailblazer is about the size of a dishwasher and has a relatively small engine. To make its four-to-seven-month trip to the Moon (depending on the launch date) as efficient as possible, the mission’s design and navigation team has planned a trajectory that will use the gravity of the Sun, Earth, and Moon to guide the spacecraft — a technique called low-energy transfer.

        “The initial boost provided by the rocket will send the spacecraft past the Moon and into deep space, and its trajectory will then be naturally reshaped by gravity after several lunar flybys and loops around Earth. This will allow it to be captured into lunar orbit with minimal propulsion needs,” said Gregory Lantoine, Lunar Trailblazer’s mission design and navigation lead at JPL. “It’s the most fuel-efficient way to get to where we need to go.”

        As it flies past the Moon several times, the spacecraft will use small thruster bursts — aka trajectory correction maneuvers — to slowly change its orbit from highly elliptical to circular, bringing the satellite down to an altitude of about 60 miles (100 kilometers) above the Moon’s surface.

        Arriving at the Moon

        Once in its science orbit, Lunar Trailblazer will glide over the Moon’s surface, making 12 orbits a day and observing the surface at a variety of different times of day over the course of the mission. The satellite will also be perfectly placed to peer into the permanently shadowed craters at the Moon’s South Pole, which harbor cold traps that never see direct sunlight. If Lunar Trailblazer finds significant quantities of ice at the base of the craters, those locations could be pinpointed as a resource for future lunar explorers.

        The data the mission collects will be transmitted to NASA’s Deep Space Network and delivered to Lunar Trailblazer’s new operations center at Caltech’s IPAC in Pasadena, California. Working alongside the mission’s experienced team will be students from Caltech and nearby Pasadena City College who are involved in all aspects of the mission, from operations and communications to developing software.

        Lunar Trailblazer was a selection of NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration), which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain the lower overall cost, SIMPLEx missions have a higher risk posture and lighter requirements for oversight and management. This higher risk acceptance allows NASA to test pioneering technologies, and the definition of success for these missions includes the lessons learned from more experimental endeavors.

        “We are a small mission with groundbreaking science goals, so we will succeed by embracing the flexibility that’s built into our organization,” said Lee Bennett, Lunar Trailblazer operations lead with IPAC. “Our international team consists of seasoned engineers, science team members from several institutions, and local students who are being given the opportunity to work on a NASA mission for the first time.”

        More About Lunar Trailblazer

        Lunar Trailblazer is led by Principal Investigator Bethany Ehlmann of Caltech in Pasadena, California. Caltech also leads the mission’s science investigation and mission operations. This includes planning, scheduling, and sequencing of all science, instrument, and spacecraft activities during the nominal mission. Science data processing will be done in the Bruce Murray Laboratory for Planetary Visualization at Caltech. NASA’s Jet Propulsion Laboratory in Southern California manages Lunar Trailblazer and provides system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. Lockheed Martin Space provides the spacecraft, integrates the flight system, and supports operations under contract with Caltech. University of Oxford developed and provided the LTM instrument. Part of NASA’s Lunar Discovery Exploration Program, the mission is managed by NASA’s Planetary Mission Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

        For more information about Lunar Trailblazer, visit:

        https://www.jpl.nasa.gov/missions/lunar-trailblazer

        News Media Contacts

        Karen Fox / Molly Wasser
        NASA Headquarters, Washington
        202-358-1600
        karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

        Ian J. O’Neill
        Jet Propulsion Laboratory, Pasadena, Calif.
        818-354-2649
        ian.j.oneill@jpl.nasa.gov

        Isabel Swafford
        Caltech IPAC
        626-216-4257
        iswafford@ipac.caltech.edu

        2025-021

        NASA Readies Moon Rocket for the Future with Manufacturing Innovation

        13 February 2025 at 10:29

        NASA’s Artemis campaign will send astronauts, payloads, and science experiments into deep space on NASA’s SLS (Space Launch System) super heavy-lift Moon rocket. Starting with Artemis IV, the Orion spacecraft and its astronauts will be joined by other payloads atop an upgraded version of the SLS, called Block 1B. SLS Block 1B will deliver initial elements of a lunar space station designed to enable long term exploration of the lunar surface and pave the way for future journeys to Mars. To fly these advanced payloads, engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are building a cone-shaped adapter that is key to SLS Block 1B.

        At NASA Marshall, the PLA engineering development unit is installed into the 4697-test stand for structural testing. It was then attached to the large cylindrical structure which simulates the Exploration Upper Stage interface. Load lines were then connected to the top of the PLA.The testing demonstrated that it can handle up to three times the expected load.
        At NASA Marshall, the PLA engineering development unit is installed into the 4697-test stand for structural testing. It was then attached to the large cylindrical structure which simulates the Exploration Upper Stage interface. Load lines were then connected to the top of the PLA. The testing demonstrated that it can handle up to three times the expected load.
        NASA/Samuel Lott

        The payload adapter, nestled within the universal stage adapter sitting atop the SLS Block 1B’s exploration upper stage, acts as a connecting point to secure a large payload that is co-manifested – or flying along with – the Orion spacecraft. The adapter consists of eight composite panels with an aluminum honeycomb core and two aluminum rings.

        Beginning with the Artemis IV mission, SLS Block 1B will feature a new, more powerful upper stage that provides a substantial increase in payload mass, volume, and energy over the first variant of the rocket that is launching Artemis missions I through III. SLS Block 1B can send 84,000 pounds of payload – including both a crewed Orion spacecraft and a 10-metric ton (22,046 lbs.) co-manifested payload riding in a separate cargo compartment – to the Moon in a single launch.

        Artemis IV’s co-manifested payload will be the Lunar I-Hab, one of the initial elements of the Gateway lunar space station. Built by ESA (European Space Agency), the Lunar I-Hab provides expanded capability for astronauts to live, work, conduct science experiments, and prepare for their missions to the lunar surface.

        Before the Artemis IV mission structure was finalized, NASA engineers needed to design and test the new payload adapter.

        “With SLS, there’s an intent to have as much commonality between flights as possible,” says Brent Gaddes, Lead for the Orion Stage Adapter and Payload Adapter in the SLS Spacecraft/Payload Integration & Evolution Office at NASA Marshall.

        However, with those payloads changing typically every flight, the connecting payload adapter must change as well.

        “We knew there needed to be a lot of flexibility to the payload adapter, and that we needed to be able to respond quickly in-house once the payloads were finalized,” says Gaddes.

        Working alongside the robots, NASA’s next generation of engineers are learning from experts with decades of manufacturing expertise as they prepare the metal honeycomb structure substrate. During production, the fingerprints of the engineers are imprinted where metal meets composite. Even after the finishing touches are applied, the right light at the right angle reveals the harmless prints of the adapter’s makers as it launches payloads on SLS that will enable countless discoveries.
        Working alongside the robots, NASA’s next generation of engineers are learning from experts with decades of manufacturing expertise as they prepare the metal honeycomb structure substrate. During production, the fingerprints of the engineers are imprinted where metal meets composite. Even after the finishing touches are applied, the right light at the right angle reveals the harmless prints of the adapter’s makers as it launches payloads on SLS that will enable countless discoveries.
        NASA/Samuel Lott

        A Flexible Approach

        The required flexibility was not going to be satisfied with a one-size-fits-all approach, according to Gaddes.

        Since different size payload adapters could be needed, Marshall is using a flexible approach to assemble the payload adapter that eliminates the need for heavy and expensive tooling used to hold the parts in place during assembly.  A computer model of each completed part is created using a process called structured light scanning. The computer model provides the precise locations where holes need to be drilled to hold the parts together so that the completed payload adapter will be exactly the right size.

        “Structured light has helped us reduce costs and increase flexibility on the payload adapter and allows us to pivot,” says Gaddes. “If the call came down to build a cargo version of SLS to launch 40 metric tons, for example, we can use our same tooling with the structured light approach to adapt to different sizes, whether that’s for an adapter with a larger diameter that’s shorter, or one with a smaller diameter that’s longer. It’s faster and cheaper.”  

        NASA Marshall engineers use an automated placement robot to manufacture eight lightweight composite panels from a graphite epoxy material. The robot performs fast, accurate lamination following preprogrammed paths, its high speed and precision resulting in lower cost and significantly faster production than other manufacturing methods.

        At NASA Marshall, an engineering development unit of the payload has been successfully tested which demonstrated that it can handle up to three times the expected load. Another test version currently in development, called the qualification unit, will also be tested to NASA standards for composite structures to ensure that the flight unit will perform as expected.

        “The payload adapter is shaped like a cone, and historically, most of the development work on structures like this has been on cylinders, so that’s one of the many reasons why testing it is so important,” says Gaddes. “NASA will test as high a load as possible to learn what produces structural failure. Any information we learn here will feed directly into the body of information NASA has pulled together over the years on how to analyze structures like this, and of course that’s something that’s shared with industry as well. It’s a win for everybody.”

        With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

        News Media Contact

        Jonathan Deal
        Marshall Space Flight Center, Huntsville, Ala. 
        256-544-0034 
        jonathan.e.deal@nasa.gov

        Heart Health

        13 February 2025 at 09:00
        4 Min Read

        Heart Health

        iss062e115369 (March 26, 2020) --- NASA astronaut and Expedition 62 Flight Engineer Jessica Meir conducts cardiac research in the Life Sciences Glovebox located in the Japanese Kibo laboratory module. The Engineered Heart Tissues investigation could promote a better understanding of cardiac function in microgravity which would be useful for drug development and other applications related to heart conditions on Earth.
        Jessica Meir conducts cardiac research in the space station’s Life Sciences Glovebox.
        Credits: NASA

        Science in Space: February 2025

        February was first proclaimed as American Heart Month in 1964. Since then, its 28 (or 29) days have served as an opportunity to encourage people to focus on their cardiovascular health.

        The International Space Station serves as a platform for a variety of ongoing research on human health, including how different body systems adapt to weightlessness. This research includes assessing cardiovascular health in astronauts during and after spaceflight and other studies using models of the cardiovascular system, such as tissue cultures. The goal of this work is to help promote heart health for humans in space and everyone on Earth. For this Heart Month, here is a look at some of this spaceflight research

        Building a better heart model

        An astronaut wearing white latex gloves holds a syringe in each hand. The syringes are attached to a container about the size of a tissue box that holds cell cultures. The top of the container is green with multiple silver ports and a BioServe logo.
        Media exchange in the tissue chambers for the Engineered Heart Tissue investigation.
        NASA

        Microgravity exposure is known to cause changes in cardiovascular function. Engineered Heart Tissues assessed these changes using 3D cultured cardiac tissues that model the behavior of actual heart tissues better than traditional cell cultures. When exposed to weightlessness, these “heart-on-a-chip” cells behaved in a manner similar to aging on Earth. This finding suggests that these engineered tissues can be used to investigate the effects of space radiation and long-duration spaceflight on cardiac function. Engineered tissues also could support development of measures to help protect crew members during a mission to Mars. Advanced 3D culture methodology may inform development of strategies to prevent and treat cardiac diseases on Earth as well.

        Private astronaut heart health

        All 11 crew members are facing the camera and smiling. Artemyev is wearing a black polo shirt, Mateev a long-sleeved blue and white shirt and Korsakov a blue polo shirt. The rest of the crew members are wearing black or dark blue polo shirts. The three astronauts in the back row are upside down in relation to the others.
        In April 2022, the 11-person station crew included (clockwise on the outside from bottom right) NASA astronaut Tom Marshburn; Roscosmos cosmonauts Oleg Artemyev, Denis Matveev, and Sergey Korsakov; NASA astronauts Raja Chari, Kayla Barron, and Matthias Maurer; and Ax-1 astronauts (center row from left) Mark Pathy, Eytan Stibbe, Larry Conner, and Michael López-Alegría.
        NASA

        For decades, human research in space has focused on professional and government-agency astronauts, but commercial spaceflight opportunities now allow more people to participate in microgravity research. Cardioprotection Ax-1 analyzed cardiovascular and general health in private astronauts on the 17-day Axiom-1 mission.

        The study found that 14 health biomarkers related to cardiac, liver, and kidney health remained within normal ranges during the mission, suggesting that spaceflight did not significantly affect the health of the astronaut subjects. This study paves the way for monitoring and studying the effects of spaceflight on private astronauts and developing health management plans for commercial space providers.

        Better measurements for better health

        Peake, in a blue t-shirt and black shorts, is using his right hand to pull on a purple resistance band around his right foot. He is holding a small blue microphone in his left hand. Several laptops and multiple cords, wiring, and hardware are visible behind him.
        ESA astronaut Tim Peake conducts operations for the Vascular Echo experiment.
        NASA

        Vascular Echo, an investigation from CSA (Canadian Space Agency), examined blood vessels and the heart using a variety of tools, including ultrasound. A published study suggests that 3D imaging technology might better measure cardiac and vascular anatomy than the 2D system routinely used on the space station. The research team also developed a probe for the ultrasound device that better directs the beam, making it possible for someone who is not an expert in sonography to take precise measurements. This technology could help astronauts monitor heart health and treat cardiovascular issues on a long-duration mission to the Moon or Mars. The technology also could help patients on Earth who live in remote locations, where an ultrasound operator may not always be available.

        Long-term heart health in space

        As part of exploring ways to keep astronauts healthy on missions to the Moon and Mars, NASA is conducting a suite of space station studies called CIPHER that looks at the effects of spaceflight lasting up to a year. One CIPHER study, Vascular Calcium, examines whether calcium lost from bone during spaceflight might deposit in the arteries, increasing vessel stiffness and contributing to increased risk of future cardiovascular disease. Astronaut volunteers provide blood and urine samples and undergo ultrasound and high-resolution scans of their bones and arteries for this investigation. Another CIPHER study, Coronary Responses, uses advanced imaging tests to measure heart and artery response to spaceflight.

        These studies will help scientists determine whether spaceflight accelerates narrowing and stiffening of the arteries, known as atherosclerosis, or increases the risk of atrial fibrillation, a rapid and irregular heartbeat seen in middle-aged adults. This work also could help identify potential biomarkers and early warning indicators of cardiovascular disease.

        Melissa Gaskill

        International Space Station Research Communications Team

        Johnson Space Center

        ❌