Normal view

There are new articles available, click to refresh the page.
Yesterday — 17 January 2025International Space Station (ISS) – NASA

Peak Performance in Microgravity

17 January 2025 at 10:00

Science in Space January 2025

At the start of a new year, many people think about making positive changes in their lives, such as improving physical fitness or learning a particular skill. Astronauts on the International Space Station work all year to maintain a high level of performance while adapting to changes in their physical fitness, cognitive ability, sensory perception, and other functions during spaceflight.

Research on the space station looks at how these qualities change in space, the ways those changes affect daily performance, and countermeasures to keep astronauts at their peak.

Saint-Jacques wears a black sleeveless shirt and a black headband, both with a round blue CSA logo patch, and two watches on his left wrist. With both hands, he is holding a device the size of a large shoebox, with silver edges around black devices connected with several cords.
CSA astronaut David Saint-Jacques wears the Bio-Monitor health sensor shirt and headband.
NASA

A current CSA (Canadian Space Agency) investigation, Space Health, assesses the effects of spaceflight on cardiovascular deconditioning. The investigation uses Bio-Monitor, wearable sensors that collect data such as pulse rate, blood pressure, breathing rate, skin temperature, and physical activity levels. Results could support development of an autonomous system to monitor cardiovascular health on future space missions. Similar technology could be used to monitor heart health in people on Earth.

Maintaining muscle fitness

Gerst, wearing black shorts, lies on his back while Auñón-Chancellor holds a small white ultrasound device over his right upper arm. Auñón-Chancellor is wearing a pink shirt, black pants, and white socks. Her head is turned toward the screen of the ultrasound.
NASA astronaut Serena Auñón-Chancellor tests ESA astronaut Alexander Gerst’s muscle tone.
ESA

During spaceflight, astronauts lose muscle mass and stiffness, an indication of strength. Astronauts exercise daily to counteract these effects, but monitoring the effectiveness of exercise had been limited to before and after flight due to the lack of technologies appropriate for use in space. The ESA (European Space Agency) Myotones investigation demonstrated that a small, non-invasive device accurately measured muscle stiffness and showed that current countermeasures seem to be effective for most muscle groups. Accurate inflight assessment could help scientists target certain muscles to optimize the effectiveness of exercise programs on future missions. The measuring device also could benefit patients in places on Earth without other means for monitoring.

Keeping a sharp mind

Research suggests that the effects of spaceflight on cognitive performance likely are due to the influence of stressors such as radiation and sleep disruption. Longer missions that increase the exposure to these hazards may change how they affect individuals.

Dean, wearing a green shirt and a headset, is seated inside the cockpit-shaped black simulator, with his back toward the camera. Images of the surface of Mars are projected on screens in front of him.
Test subject Lance Dean performs a manual control task in the Johnson Space Center Neurosciences Laboratory’s Motion Simulator.
NASA

Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function right after landing. The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and ability to multitask in simulated flying and driving challenges. Researchers attribute this to subtle physiological changes during spaceflight. Performance recovered once individuals were exposed to a task, suggesting that having crew members conduct simulated tasks right before actual ones could be beneficial. This work helps scientists ensure that crew members can safely land and conduct early operations on the Moon and Mars.

Standard Measures collects a set of physical and mental measurements related to human spaceflight risks, including a cognition test battery, from astronauts before, during, and after missions. Using these data, researchers found that astronauts on 6-month missions demonstrated generally stable cognitive performance with mild changes in certain areas, including processing speed, working memory, attention, and willingness to take risks. The finding provides baseline data that could help identify cognitive changes on future missions and support development of appropriate countermeasures. This research includes the largest sample of professional astronauts published to date.

Evaluating perception

Saint-Jacques is wearing a blue polo shirt with a CSA logo, khaki pants, and black socks. He is suspended upside down by four white straps connected to a harness around his middle and has a virtual reality headset on his head and a small black controller in his right hand. An open laptop floats next to him.
CSA astronaut David Saint-Jacques conducts a session for VECTION.
NASA

Another function that can be affected by spaceflight is sensory perception, such as the ability to interpret motion, orientation, and distance. We use our visual perception of the height and width of objects around us, for example, to complete tasks such as reaching for an object and deciding whether we can fit through an opening. VECTION, a CSA investigation, found that microgravity had no immediate effect on the ability to perceive the height of an object, indicating that astronauts can safely perform tasks that rely on this judgment soon after they arrive in space. Researchers concluded there is no need for countermeasures but did suggest that space travelers be made aware of late-emerging and potentially long-lasting changes in the ability to perceive object height.

Melissa Gaskill

International Space Station Research Communications Team

Johnson Space Center

Before yesterdayInternational Space Station (ISS) – NASA

Station Science Top News: Jan. 10, 2025

13 January 2025 at 13:34

Measurements from space support wildfire risk predictions

Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.

As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.

This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown).
NASA

Combining instruments provides better emissions data

Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.

Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.

The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles.
NASA

Thunderstorm phenomena observed from space

Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.

Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.

Close-up view of a module on the International Space Station with attached solar panels and instruments, set against the backdrop of Earth’s curvature and the darkness of space.
View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility.
NASA

Astronomers Catch Unprecedented Features at Brink of Active Black Hole

13 January 2025 at 10:14

International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities. The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.

Radio map time lapse of 1ES 1927 jets
Radio images of 1ES 1927+654 reveal emerging structures that appear to be jets of plasma erupting from both sides of the galaxy’s central black hole following a strong radio flare. The first image, taken in June 2023, shows no sign of the jet, possibly because hot gas screened it from view. Then, starting in February 2024, the features emerge and expand away from the galaxy’s center, covering a total distance of about half a light-year as measured from the center of each structure.
NSF/AUI/NSF NRAO/Meyer at al. 2025

The source is 1ES 1927+654, a galaxy located about 270 million light-years away in the constellation Draco. It harbors a central black hole with a mass equivalent to about 1.4 million Suns.

“In 2018, the black hole began changing its properties right before our eyes, with a major optical, ultraviolet, and X-ray outburst,” said Eileen Meyer, an associate professor at UMBC (University of Maryland Baltimore County). “Many teams have been keeping a close eye on it ever since.”

She presented her team’s findings at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. A paper led by Meyer describing the radio results was published Jan. 13 in The Astrophysical Journal Letters.

After the outburst, the black hole appeared to return to a quiet state, with a lull in activity for nearly a year. But by April 2023, a team led by Sibasish Laha at UMBC and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had noted a steady, months-long increase in low-energy X-rays in measurements by NASA’s Neil Gehrels Swift Observatory and NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. This monitoring program, which also includes observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) and ESA’s (European Space Agency) XMM-Newton mission, continues.

The increase in X-rays triggered the UMBC team to make new radio observations, which indicated a strong and highly unusual radio flare was underway. The scientists then began intensive observations using the NRAO’s (National Radio Astronomy Observatory) VLBA (Very Long Baseline Array) and other facilities. The VLBA, a network of radio telescopes spread across the U.S., combines signals from individual dishes to create what amounts to a powerful, high-resolution radio camera. This allows the VLBA to detect features less than a light-year across at 1ES 1927+654’s distance.

Sky image with active galaxy 1ES 1927 circled
Active galaxy 1ES 1927+654, circled, has exhibited extraordinary changes since 2018, when a major outburst occurred in visible, ultraviolet, and X-ray light. The galaxy harbors a central black hole weighing about 1.4 million solar masses and is located 270 million light-years away.
Pan-STARRS

Radio data from February, April, and May 2024 reveals what appear to be jets of ionized gas, or plasma, extending from either side of the black hole, with a total size of about half a light-year. Astronomers have long puzzled over why only a fraction of monster black holes produce powerful plasma jets, and these observations may provide critical clues.

“The launch of a black hole jet has never been observed before in real time,” Meyer noted. “We think the outflow began earlier, when the X-rays increased prior to the radio flare, and the jet was screened from our view by hot gas until it broke out early last year.”

A paper exploring that possibility, led by Laha, is under review at The Astrophysical Journal. Both Meyer and Megan Masterson, a doctoral candidate at the Massachusetts Institute of Technology in Cambridge who also presented at the meeting, are co-authors.

Using XMM-Newton observations, Masterson found that the black hole exhibited extremely rapid X-ray variations between July 2022 and March 2024. During this period, the X-ray brightness repeatedly rose and fell by 10% every few minutes. Such changes, called millihertz quasiperiodic oscillations, are difficult to detect around supermassive black holes and have been observed in only a handful of systems to date. 

“One way to produce these oscillations is with an object orbiting within the black hole’s accretion disk. In this scenario, each rise and fall of the X-rays represents one orbital cycle,” Masterson said.  

If the fluctuations were caused by an orbiting mass, then the period would shorten as the object fell ever closer to the black hole’s event horizon, the point of no return. Orbiting masses generate ripples in space-time called gravitational waves. These waves drain away orbital energy, bringing the object closer to the black hole, increasing its speed, and shortening its orbital period.

Over two years, the fluctuation period dropped from 18 minutes to just 7 — the first-ever measurement of its kind around a supermassive black hole. If this represented an orbiting object, it was now moving at half the speed of light. Then something unexpected happened — the fluctuation period stabilized.

Artist's rendering of white dwarf orbiting supermassive black hole
In this artist’s concept, matter is stripped from a white dwarf (sphere at lower right) orbiting within the innermost accretion disk surrounding 1ES 1927+654’s supermassive black hole. Astronomers developed this scenario to explain the evolution of rapid X-ray oscillations detected by ESA’s (European Space Agency) XMM-Newton satellite. ESA’s LISA (Laser Interferometer Space Antenna) mission, due to launch in the next decade, should be able to confirm the presence of an orbiting white dwarf by detecting the gravitational waves it produces.
NASA/Aurore Simonnet, Sonoma State University

“We were shocked by this at first,” Masterson explained. “But we realized that as the object moved closer to the black hole, its strong gravitational pull could begin to strip matter from the companion. This mass loss could offset the energy removed by gravitational waves, halting the companion’s inward motion.”

So what could this companion be? A small black hole would plunge straight in, and a normal star would quickly be torn apart by the tidal forces near the monster black hole. But the team found that a low-mass white dwarf — a stellar remnant about as large as Earth — could remain intact close to the black hole’s event horizon while shedding some of its matter. A paper led by Masterson summarizing these results will appear in the Feb. 13 edition of the journal Nature.

This model makes a key prediction, Masterson notes. If the black hole does have a white dwarf companion, the gravitational waves it produces will be detectable by LISA (Laser Interferometer Space Antenna), an ESA mission in partnership with NASA that is expected to launch in the next decade.

By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contacts:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Jill Malusky
304-456-2236
jmalusky@nrao.edu
National Radio Astronomy Observatory, Charlottesville, Va.

Facebook logo
Instagram logo

Los Angeles Fires Seen from International Space Station

10 January 2025 at 16:59
A view of Los Angeles, California from the International Space Station. The fires appear as orange lights just above center, in between two areas brightly lit by city lights.
NASA/Don Pettit

On Jan. 10, 2025, NASA astronaut Don Pettit posted two images of the Los Angeles fires from the International Space Station. Multiple destructive fires broke out in the hills of Los Angeles County in early January 2025, fueled by a dry landscape and winds that gusted up to 100 miles per hour.

See satellite imagery of the fires.

Image credit: NASA/Don Pettit

Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station

8 January 2025 at 10:13

4 min read

Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station

NASA astronaut Nick Hague will install patches to the agency’s NICER (Neutron star Interior Composition Explorer) X-ray telescope on the International Space Station as part of a spacewalk scheduled for Jan. 16. Hague, along with astronaut Suni Williams, will also complete other tasks during the outing.

NICER will be the first NASA observatory repaired on-orbit since the last servicing mission for the Hubble Space Telescope in 2009.

Hague and other astronauts, including Don Pettit, who is also currently on the space station, rehearsed the NICER patch procedures in the NBL (Neutral Buoyancy Laboratory), a 6.2-million-gallon indoor pool at NASA’s Johnson Space Center in Houston, in 2024. 

Photo of a man in a spacesuit in a pool.
NASA astronaut Nick Hague holds a patch for NICER (Neutron star Interior Composition Explorer) at the end of a T-handle tool during a training exercise on May 16, 2024, in the NBL (Neutral Buoyancy Laboratory) at NASA’s Johnson Space Center in Houston. 
NASA/NBL Dive Team
An astronaut practicing in a pool
Astronaut Nick Hague removes a patch from the caddy using a T-handle tool during a training exercise in the NBL at NASA Johnson on May 16, 2024. The booklet on his wrist has a schematic of the NICER telescope and where the patches will go.
NASA/NBL Dive Team

“We use the NBL to mimic, as much as possible, the conditions astronauts will experience while preforming a task during a spacewalk,” said Lucas Widner, a flight controller at KBR and NASA Johnson who ran the NICER NBL sessions. “Most projects outside the station focus on maintenance and upgrades to components like solar panels. It’s been exciting for all of us to be part of getting a science mission back to normal operations.”

From its perch near the space station’s starboard solar array, NICER studies the X-ray sky, including erupting galaxies, black holes, superdense stellar remnants called neutron stars, and even comets in our solar system. 

But in May 2023, NICER developed a “light leak.” Sunlight began entering the telescope through several small, damaged areas in the telescope’s thin thermal shields. During the station’s daytime, the light reaches the X-ray detectors, saturating sensors and interfering with NICER’s measurements of cosmic objects. The mission team altered their daytime observing strategy to mitigate the effect. 

A close-up of NICER
UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the space station’s Poisk Mini-Research Module 2 in July 2023. Photos like this one helped the NICER team map the damage to the telescope’s thermal shields.
NASA/Sultan Alneyadi
A close-up of damage to NICER’s thermal shields
Some of NICER’s damaged thermal shields (circled) are visible in this photograph.
NASA/Sultan Alneyadi

The team also developed a plan to cover the largest areas of damage using wedge-shaped patches. Hague will slide the patches into the telescope’s sunshades and lock them into place. 

“We designed the patches so they could be installed either robotically or by an astronaut,” said Steve Kenyon, NICER’s mechanical engineering lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “They’re installed using a tool called a T-handle that the astronauts are already familiar with.”

The NBL contains life-size mockups of sections of the space station. Under the supervision of a swarm of scuba divers, a pair of astronauts rehearse exiting and returning through an airlock, traversing the outside of the station, and completing tasks. 

For the NICER repair, the NBL team created a full-scale model of NICER and its surroundings near the starboard solar array. Hague, Pettit, and other astronauts practiced taking the patches out of their caddy, inserting them into the sunshades, locking them into place, and verifying they were secure. 

The task took just under an hour each time, which included the time astronauts needed to travel to NICER, set up their tools, survey the telescope for previously undetected damage, complete the repair, and clean up their tools. 

Practice runs also provided opportunities for the astronauts to troubleshoot how to position themselves so they could reach NICER without touching it too often and for flight controllers to identify safety concerns around the repair. 

An astronaut in a pool
Astronaut Don Pettit simulates taking pictures of the NICER telescope mockup during a training exercise in the NBL at NASA Johnson on May 16, 2024.
NASA/NBL Dive Team
An astronaut in a pool
Astronaut Don Pettit removes a patch from the caddy during a training exercise in the NBL at NASA Johnson on May 16, 2024.
NASA/NBL Dive Team

Being fully submerged in a pool is not the same as being in space, of course, so some issues that arose were “pool-isms.” For example, astronauts sometimes drifted upward while preparing to install the patches in a way unlikely to happen in space. 

Members of the NICER team, including Kenyon and the mission’s principal investigator, Keith Gendreau at NASA Goddard, supported the NBL practice runs. They helped answer questions about the physical aspects of the telescope, as well as science questions from the astronauts and flight controllers. NICER is the leading source of science results on the space station. 

“It was awesome to watch the training sessions and be able to debrief with the astronauts afterward,” Gendreau said. “There isn’t usually a lot of crossover between astrophysics science missions and human spaceflight. NICER will be the first X-ray telescope serviced by astronauts. It’s been an exciting experience, and we’re all looking forward to the spacewalk where it will all come together.”

The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Facebook logo
Instagram logo

NASA’s 2024 International Space Station Achievements

8 January 2025 at 10:00
Streaks of white light cover a blue Earth, and a green and red aurora rises from the horizon. The exterior of the space station is visible in the top third of the image.
City lights streak across Earth and an aurora is visible on the horizon as the International Space Station passes over Lake Michigan.
NASA

For more than 24 years, NASA has supported a continuous U.S. human presence aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth for the benefit of humanity. The space station is a springboard to NASA’s next great leaps in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.

Read more about the groundbreaking work conducted in 2024 aboard the station:

Robot performs remote simulated surgery

On long-duration missions, crew members may need surgical procedures, whether simple stitches or an emergency appendectomy. A small robot successfully performed simulated surgical procedures on the space station in early February 2024 for the Robotic Surgery Tech Demo, using two “hands” to grasp and cut rubber bands simulating tissue. Researchers compare the procedures conducted aboard the station and on Earth to evaluate the effects of microgravity and communication delays between space and ground.

O’Hara is wearing a gray hooded sweatshirt and smiling at the camera, as she holds the miniature robot with both hands. The robot is narrow, about the size of an adult’s forearm, with a gray handle that has up and down arrow buttons and two bent “arms” on its end. One of the arms has a metal spatula and the other a set of clippers.
NASA astronaut Loral O’Hara holds the Robotic Surgery Tech Demo hardware on the International Space Station.
NASA

3D metal print in space

On May 30,2024, the ESA (European Space Agency) Metal 3D Printer investigation created a small stainless steel s-curve, the first metal 3D print in space. Crew members on future missions could print metal parts for equipment maintenance, eliminating the need to pack spare parts and tools at launch. This technology also has the potential to improve additive manufacturing on Earth.

Epps is wearing a long-sleeved black top and pants, a black headband, goggles, and blue latex gloves and has a tablet attached by Velcro to her pants. In her right hand she holds a small disk with six 3D printed posts of different shapes and lengths protruding from it.
NASA astronaut Jeanette Epps prints samples for Metal 3D Printer on the International Space Station.
NASA

Here’s looking at you, Earth

The space station orbits roughly 250 miles above and passes over 90 percent of Earth’s population, providing a unique perspective for photographing the planet. Astronauts have taken more than 5.3 million images of Earth to monitor the planet’s changing landscape. The Expedition 71 crew took over 630,000 images, well above the average of roughly 105,000 for a single mission. This year, images included the April solar eclipse and auroras produced as the Sun’s 11-year activity cycle peaks. Others supported response to over 14 disaster events including hurricanes. In addition, 80,000 images were geolocated using machine learning, improving public search capabilities.

Milton is a large white spiral and a long cloud trail extending across this image. A portion of the space station is visible in the upper left corner, with blue ocean on Earth in the upper right.
This astronaut photo from the International Space Station shows Hurricane Milton, a category 4 storm in the Gulf of Mexico, nearing the coast of Florida in October.
NASA

Miles of flawless fibers

From mid-February to mid-March of 2024, the Flawless Space Fibers-1 system produced more than seven miles of optical fiber in space. One draw of more than a half mile of fiber surpassed the prior record of 82 feet for the longest fiber manufactured in space, demonstrating that commercial lengths of fiber can be produced in orbit. Fibers produced in microgravity can be superior to those produced in Earth’s gravity. These fibers are made from ZBLAN, a glass alloy with the potential to provide more than 10 times the transmission capacity of traditional silica-based fibers.

O’Hara, wearing a dark blue sleeveless t-shirt, smiles at the camera. Her right hand is touching the front of a large silver box built into a wall, with lights above it and a clear panel that reveals part of a circular sample holder that resembles an old film reel. There is a panel of switches below her hand and several large cameras on the wall behind her.
NASA astronaut Loral O’Hara conducting Flawless Space Fibers operations in the Microgravity Science Glovebox inside the International Space Station.
NASA

Tell-tale heart

In May 2024, BFF-Cardiac successfully bioprinted a three-dimensional human heart tissue sample using the Redwire BioFabrication Facility. Tissues bioprinted in the microgravity of the space station hold their shape without the use of artificial scaffolds. These bioprinted human heart tissues eventually could be used to create personalized patches for tissue damaged by events such as heart attacks. The tissue sample is undergoing further testing on Earth.

On the left, Dominick, wearing a black short-sleeved polo shirt and a headlamp, smiles at the camera. His arms are in the plastic sleeves of a portable glovebag the size of a large suitcase. On the right, a cylindrical glass flask holds a red liquid. In the bottom of the flask is a palm-sized white cellular structure under a spotlight.
At left, NASA astronaut Matthew Dominick works on the BFF-Cardiac investigation aboard the International Space Station. At right, cardiac tissue is 3D bioprinted for the investigation.
NASA

Station-tested radiation technology flown on Artemis I

The Orion spacecraft carried 5,600 passive and 34 active radiation detectors on its Artemis I uncrewed mission around the Moon in November 2022. Some of these devices previously were tested on the space station: HERA (Hybrid Electronic Radiation Assessor), which detects radiation events such as solar flares; the ESA (European Space Agency) Active Dosimeters, a wearable device collecting real-time data on individual radiation doses; and the AstroRad Vest, a garment to protect radiation-sensitive organs and tissues. In 2024, researchers released evaluation of data collected in 2022 by these tools that indicate the Orion spacecraft can protect astronauts on lunar missions from potentially hazardous radiation. The orbiting laboratory remains a valuable platform for testing technology for missions beyond Earth’s orbit.

The vest, closed by two buckle straps, is dark blue with a gray stripe from the bottom up to the shoulder, and small patches of the American and Israeli flags and StemRad and Lockheed Martin logos. The seven windows of the cupola are visible behind it and, through them, Earth below.
The AstroRad Vest, a radiation protection garment, floats in the International Space Station’s cupola.
NASA

Record participation in Fifth Robo-Pro Challenge

A record 661 teams and 2,788 applicants from thirteen countries, regions, and organizations participated in the fifth Kibo Robo-Pro Challenge, which wrapped its final round in September. This educational program from JAXA (Japan Aerospace Exploration Agency) has students solve various problems by programming free-flying Astrobee robots aboard the space station. Participants gain hands-on experience with space robot technology and software programming and interact with others from around the world.

The carry-on suitcase-sized, cube-shaped robot, with blue and black sides and a white middle, moves up and across the image from right to left. Behind it is a round white station hatch and, to either side of it, walls covered with cords, equipment, and rolls of tape.
An Astrobee robot moves through the space station for the Robo-Pro Challenge.
NASA

Melissa Gaskill
International Space Station Research Communications Team|
Johnson Space Center

JAXA’s First Wooden Satellite Deploys from Space Station

7 January 2025 at 14:09
An open box is made of four wooden panels. The two missing wooden panels show a metal internal structure ensuring the box stays together.
Internal view of LignoSat’s structure shows the relationship among wooden panels, aluminum frames, and stainless-steel shafts.
Credit: Kyoto University

In December 2024, five CubeSats deployed into Earth’s orbit from the International Space Station. Among them was LignoSat, a wooden satellite from JAXA (Japanese Aerospace Exploration Agency) that investigates the use of wood in space. Findings could offer a more sustainable alternative to conventional satellites.

A previous experiment aboard station exposed three species of wood to the space environment to help researchers determine the best option for LignoSat. The final design used 10 cm long honoki magnolia wood panels assembled with a Japanese wood-joinery method.

Researchers will use sensors to evaluate strain on the wood and measure its responses to temperature and radiation in space. Geomagnetic levels will also be monitored to determine whether the geomagnetic field can penetrate the body of the wooden satellite and interfere with its technological capabilities. Investigating uses for wood in space could lead to innovative solutions in the future.

An open box is made of four wooden panels. One additional panel is to the side. The edge of the additional panel matches up with the open box, like a jigsaw puzzle.
A traditional Japanese wooden joining method, the Blind Miter Dovetail Joint, is used for LignoSat to connect two wooden panels without using glue or nails.
Credit: Kyoto University
An outside view of the space station with three square boxes in the center of the image. To the left is a solar panel. To the right is part of the space station. At the bottom is a view of the Earth.
Three CubeSats are deployed from space station, including LignoSat.

NASA to Cover Two Spacewalks, Hold Preview News Conference

7 January 2025 at 10:10
This unique "space-selfie" from spacewalker Thomas Pesquet of ESA (European Space Agency) captures he and NASA spacewalker Shane Kimbrough as they work to complete the installation of the second roll out solar array on the International Space Station's Port-6 truss structure. Pesquet is in the foreground, with his helmet facing the camera, and Kimbrough is behind and above him, floating horizontally in his spacesuit, working on the space station.
NASA astronaut Shane Kimbrough and ESA (European Space Agency) astronaut Thomas Pesquet conduct a spacewalk to complete work on the International Space Station on June 25, 2021.
Credit: NASA

Editor’s note: This advisory was updated Jan. 13, 2025, to reflect new live coverage and start times for U.S. spacewalk 92.

Editor’s note: This advisory was updated Jan. 10, 2025, to reflect new live coverage and start times for both spacewalks.

Editor’s note: This advisory was updated Jan. 10, 2025, to add the names of the astronauts participating in U.S. spacewalk 92.

Two NASA astronauts will venture outside the International Space Station, conducting U.S. spacewalk 91 on Thursday, Jan. 16, and U.S. spacewalk 92 on Thursday, Jan. 23, to complete station upgrades.

NASA also will discuss the pair of upcoming spacewalks during a news conference at 2 p.m. EST Friday, Jan. 10, on NASA+ from the agency’s Johnson Space Center in Houston. Learn how to watch NASA content through a variety of platforms, including social media.

Participants in the news conference from NASA Johnson include:

  • Bill Spetch, operations integration manager
  • Nicole McElroy, spacewalk flight director

Media interested in participating in person or by phone must contact the NASA Johnson newsroom no later than 10 a.m. Wednesday, Jan. 8, at: 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial in no later than 15 minutes before the start of the news conference. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.

The first spacewalk is scheduled to begin at 8 a.m. on Jan. 16, and last about six and a half hours. NASA will provide live coverage beginning at 6:30 a.m. on NASA+.

NASA astronauts Nick Hague and Suni Williams will replace a rate gyro assembly that helps provide orientation control for the station, install patches to cover damaged areas of light filters for an X-ray telescope called NICER (Neutron star Interior Composition Explorer), and replace a reflector device used for navigational data on one of the international docking adapters. Additionally, the pair will check access areas and connector tools that will be used for future maintenance work on the Alpha Magnetic Spectrometer.

Hague will serve as spacewalk crew member 1 and will wear a suit with red stripes. Williams will serve as spacewalk crew member 2 and will wear an unmarked suit. This will be the fourth for Hague and the eighth for Williams. It will be the 273rd spacewalk in support of space station assembly, maintenance, and upgrades.

The second spacewalk is scheduled to begin at 8:15 a.m. on Jan. 23, and last about six and a half hours. NASA will provide live coverage beginning at 6:45 a.m. on NASA+.

NASA astronauts Butch Wilmore and Suni Williams will remove a radio frequency group antenna assembly from the station’s truss, collect samples of surface material for analysis from the Destiny laboratory and the Quest airlock to see whether microorganisms may exist on the exterior of the orbital complex, and prepare a spare elbow joint for the Canadarm2 robotic arm in the event it is needed for a replacement. It will be the 274th spacewalk in support of space station assembly, maintenance, and upgrades.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share

Details

Last Updated
Jan 13, 2025
Editor
Jessica Taveau

Assessment of PFO as Related to DCS in the Spaceflight Environment and During Ground Testing

31 December 2024 at 12:55

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

PFO, OCHMO
In-person participants L-R standing: Dave Francisco, Joanne Kaouk, Dr. Richard Moon, Dr. Tony Alleman, Dr. Sean Hardy, Sarah Taoufik, Kristin Coffey, Dr. Ed Powers, Dr. Doug Ebersole, Dr. Steven Laurie, Dr. Doug Ebert; L-R seated: Dr. Alejandro Garbino, Dr. Robert Sanders, Dr. Kristi Ray, Dr. Mike Gernhardt, Dr. Joseph Dervay, Dr. Matt Makowski). Not pictured: Dr. Caroline Fife
NASA

Decompression sickness (DCS) is a condition which results from dissolved gases (primarily nitrogen) forming bubbles in the bloodstream and tissues. It is usually experienced in conditions where there are rapid decreases in ambient pressure, such as in scuba divers, high-altitude aviation, or other pressurized environments. The evolved gas bubbles have various physiological effects and can obstruct the blood vessels, trigger inflammation, and damage tissue, resulting in symptoms of DCS. NASA presently classifies DCS into two categories: Type I DCS, which is less severe, typically leads to musculoskeletal symptoms including pain in the joints or muscles, or skin rash. Type II DCS is more severe and commonly results in neurological, inner ear, and cardiopulmonary symptoms. The risk of DCS in spaceflight presents during extravehicular activities (EVAs) in which astronauts perform mission tasks outside the spaceflight vehicle while wearing a pressurized suit at a lower pressure than the cabin pressure. DCS mitigation protocols based on strategies to reduce systemic nitrogen load are implemented through the combination of habitat environmental parameters, EVA suit pressure, and breathing gas procedures (prebreathe protocols) to achieve safe and effective mission operations. The pathophysiology of DCS has still not been fully elucidated since cases occur despite the absence of detected gas bubbles but includes right to left shunting of venous gas emboli (VGE) via several potential mechanisms, one of which is a Patent Foramen Ovale (PFO).

Decompression sickness (DCS): Bubbles form in blood and tissue which causes local damage.
Arterial gas embolism (AGE): Results from bubbles entering the bloodstream and blocking blood flow which can cause tissue damage.
Peter N. Schochet, MD and Hauw S. Lie, MD

From: Dr. Schochet & Dr. Lie, Pediatric Pulmonologists

Reference OCHMO-TB-037 Decompression Sickness (DCS) Risk Mitigation technical brief for additional information.

A PFO is a shunt between the right atrium and the left atrium of the heart, which is a persisting remnant of a physiological communication present in the fetal heart. Post-natal increases in left atrial pressure usually force the inter-septal valve against the septum secundum and within the first 2 years of life, the septae permanently fuse due to the development of fibrous adhesions. Thus, all humans are born with a PFO and approximately 75% of PFOs fuse following childbirth. For the 25% of the population’s whose PFOs do not fuse, ~6% have what is considered by some to be a large PFO (> 2 mm). PFO diameter can increase with age. The concern with PFOs is that with a right to left shunt between the atria, venous emboli gas may pass from the right atrium (venous) to the left atrium (arterial) (“shunt”), thus by-passing the normal lung filtration of venous emboli which prevent passage to the arterial system. Without filtration, bubbles in the arterial system may lead to a neurological event such as a stroke. Any activity that increases the right atrium/venous pressure over the left atrium/arterial pressure (such as a Valsalva maneuver, abdominal compression) may further enable blood and/or emboli across a PFO/shunt.

Patent foramen ovale (PFO), a hole between the left and right atria of the heart, is known to be a cause of stroke in young adults.
S. Mazzucco, L. Li, L. Binney, P.M. Rothwell

From: Nuffield Department of Clinical Neurosciences

The purpose of this working group was to review and provide analysis on the status and progress of research and clinical activities intended to mitigate the risk of PFO and DCS issues during spaceflight. Identified cases of DCS during NASA exploration atmosphere ground testing conducted in pressurized chambers led to the prioritization of the given topic for external review. The main goals of the working group included:

  1. Quantification of any increased risk associated with the presence of a PFO during decompression protocols utilized in ground testing and spaceflight EVAs, as well as unplanned decompressions (e.g., cabin depressurization, EVA suit leak).
  2. Describe risks and benefits of PFO screening in astronaut candidates, current crewmembers, and chamber test subjects.
  3. What are potential risk reduction measures that could be considered if a person was believed to be at increased risk of DCS due to a PFO?
  4. What research and/or technology development is recommended that could help inform and/or mitigate PFO-related DCS risk?

The working group took place over two days at NASA’s Johnson Space Center and included NASA subject matter experts and stakeholders, as well as invited external reviewers from areas including cardiology, hypobaric medicine, spaceflight medicine, and military occupational health. During the working group, participants were asked to review past reports and evidence related to PFOs and risk of DCS, materials and information regarding NASA’s current experience and practices, and case studies and subsequent decision-making processes. The working group culminated in an open-forum discussion where recommendations for current and future practices were conferred and subsequently summarized in a final summary report, available on the public NASA OCHMO Standards Team website.

The following key findings are the main take-aways from the OCHMO independent assessment:

  1. In an extreme exposure/high-risk scenario, excluding individuals with a PFO and treating PFOs does not necessarily decrease the risk of DCS or create a ‘safe’ environment. It may create incremental differences and slightly reduce overall risk but does not make the risk zero. There are other physiological factors that also contribute to the risk of DCS that may have a larger impact (see 7.0 Other Physiological Factors in the findings section). 
  2. Based on the available evidence and the risk of current decompression exposures (based on current NASA protocols and NASA-STD-3001 requirements to limit the risk of DCS), it is not recommended to screen for PFOs in any spaceflight or ground testing participants. The best strategy to reduce the risk of DCS is to create as safe an environment as possible in every scenario, through effective prebreathe protocols, safety, and the capability to rapidly treat DCS should symptoms occur. 
  3. Based on opinion, no specific research is required at this time to further characterize PFOs with DCS and altitude exposure, due to the low risk and preference to institute adequate safe protocols and ensuring treatment availability both on the ground and in spaceflight.
  4. For engineering protocols conducted on the ground, it should be ensured that the same level of treatment capability (treatment chamber in the immediate vicinity of the testing) is provided as during research protocols. The ability to immediately treat a DCS case is critical in ensuring the safety of the test subjects.

The full summary report includes detailed background information, discussion points from the working group, and conclusions and recommendations. The findings from the working group and resulting summary report will help to inform key stakeholders in decision-making processes for future ground testing and spaceflight operations with the main goal of protecting crew health and safety to ensure overall mission success.

About the Author

Sarah Taoufik

Sarah Taoufik

Earth to Space Call: NASA Leaders to Speak with Station Astronauts

30 December 2024 at 11:26
NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.
NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.
Credit: NASA/Bill Ingalls

Editor’s Note: This advisory was updated Jan. 2, 2025, to reflect a new date and time for the Earth to space call.

NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will speak with NASA astronauts Nick Hague, Butch Wilmore, Suni Williams, and Don Pettit on Wednesday, Jan. 8, to discuss their mission aboard the International Space Station. The call previously was scheduled for Monday, Jan. 6.

The Earth to space call coverage begins at 1:25 p.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. 

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and eventually, to Mars.

For NASA’s launch blog and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Meira Bernstein / Josh Finch
Headquarters, Washington
202-358-1100
meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov

NASA’s Spot the Station App Developed by and for the People 

18 December 2024 at 14:56

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A collage of three smart phones depicting various capabilities of the Spot the Station app.
The Spot the Station app was developed in collaboration with the public through a series of crowdsourcing competitions.
NASA

With more than 25 years of operations, the International Space Station continues to symbolize discovery and cooperation for the benefit of humanity. Since 2012, observers have interacted with the space station through NASA’s Spot the Station website, a web browser-based tool that includes interactive maps for users to track the station and find viewpoints closest to their location.  

A decade after the website’s release, NASA sought to enhance public access to this capability with a mobile app. NASA released the Spot the Station app on IOS and Android in 2023. As of Dec. 2024, it has more than 770,000 users in 227 countries and territories around the globe, according to Ensemble, who NASA contracts to maintain support of the app. 

Revamping the Spot the Station experience was more than just an opportunity for NASA to make improvements; it allowed NASA to gather direct input from users by involving them in the development of the new app. Space Operations web and platform lead, Allison Wolff, pitched the idea to publicly crowdsource the app’s development. 

In 2022, Wolff and her team supported the release of three separate crowdsourcing competitions, where global communities were invited to design key components of the new Spot the Station app. Participants submitted functional designs, including an augmented reality component not offered on the web version and interfaces for screens such as login and sign-up windows. Multiple winners were awarded prizes totaling $8,550 across the three challenges.  

As the former Innovation Strategist in NASA’s Center of Excellence for Collaborative Innovation, part of the agency’s Prizes, Challenges, and Crowdsourcing program, Wolff was well acquainted with the ingenuity and results that stem from public-private collaborations. 

“NASA strives to incorporate inclusion and innovation into how we operate. We also collaborate with minds outside the agency because the best ideas can come from very surprising places,” said Wolff. 

Not only were the winning designs used in the final product, but the development team gained valuable feedback and worldwide perspectives from everyone who participated in the competition. 

“When you use the power of the crowd and get a consistent message about a component or an interface, that’s a good indicator of what is user-friendly,” said Wolff. 

Crowdsourcing continues to enhance the app’s functionality, including translating the app into six languages, including Spanish, French, and German, thanks to user contributions. In addition, the app’s code is open source, enabling anyone to modify and use the code for their own projects and support the tool’s growth. NASA will continue to update and improve the app with feedback from the public.  

Find more opportunities: www.nasa.gov/get-involved/  

Station Science Top News: Dec. 20, 2024

20 December 2024 at 14:19

A method for evaluating thermophysical properties of metal alloys

Simulation of the solidification of metal alloys, a key step in certain industrial processes, requires reliable data on their thermophysical properties such as surface tension and viscosity. Researchers propose comparing predictive models with experimental outcomes as a method to assess these data.

Scientists use data on surface tension and viscosity of titanium-based alloys in industrial processes such as casting and crystal growth. Non-Equilibrium Solidification, Modelling for Microstructure Engineering of Industrial Alloys, an ESA (European Space Agency) investigation, examined the microstructure and growth of these alloys using the station’s Electromagnetic Levitator. This facility eliminates the need for containers, which can interfere with experiment results.

An astronaut works inside the International Space Station, adjusting a scientific instrument panel. He wears a black polo shirt and khaki pants.
European Space Agency (ESA) astronaut Alexander Gerst is shown in the Columbus module of the International Space Station during the installation of the Electromagnetic Levitator.
ESA/Alexander Gerst

Overview of techniques for measuring thermal diffusion

Researchers present techniques for measuring thermal diffusion of molecules in a mixture. Thermal diffusion is measured using the Soret coefficient – the ratio of movement caused by temperature differences to overall movement within the system. This has applications in mineralogy and geophysics such as predicting the location of natural resources beneath Earth’s surface.

A series of ESA investigations studied diffusion, or how heat and particles move through liquids, in microgravity. Selectable Optical Diagnostics Instrument-Influence of VIbrations on DIffusion of Liquids examined how vibrations affect diffusion in mixtures with two components and SODI-DCMIX measured more-complex diffusion in mixtures of three or more components. Understanding and predicting the effects of thermal diffusion has applications in various industries such as modeling of underground oil reservoirs.

NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 installation inside the station’s Microgravity Science Glovebox.
JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi

Research validates ferrofluid technology

Researchers validated the concept of using ferrofluid technology to operate a thermal control switch in a spacecraft. This outcome could support development of more reliable and long-lasting spacecraft thermal management systems, increasing mission lifespan and improving crew safety.

Überflieger 2: Ferrofluid Application Research Goes Orbital analyzed the performance of ferrofluids, a technology that manipulates components such as rotors and switches using magnetized liquids and a magnetic field rather than mechanical systems, which are prone to wear and tear. This technology could lower the cost of materials for thermal management systems, reduce the need for maintenance and repair, and help avoid equipment failure. The paper discusses possible improvements to the thermal switch, including optimizing the geometry to better manage heat flow.

A close-up view of a compact scientific hardware unit floating in the microgravity environment of the International Space Station.
A view of hardware for the Ferrofluid Application Research Goes Orbital investigation.
UAE (United Arab Emirates)/Sultan Alneyadi

Space Gardens

18 December 2024 at 12:00
4 Min Read

Space Gardens

Astronaut Kayla Barron checks out chile peppers growing in the station
NASA astronaut Kayla Barron with chile peppers in the station’s Advanced Plant Habitat.
Credits: NASA

Science in Space December 2024

As NASA plans missions to the Moon and Mars, one challenge is figuring out how to provide crew members with enough healthy food. Bringing along a supply for months or even years in space is impractical, and stored food can lose taste and nutritional value. Growing plants in space is one way to help solve this problem. Tending space gardens also has positive psychological effects for crew members, and plants can be part of life support systems that provide services such as producing oxygen and reducing carbon dioxide.

Large, reddish-green lettuce leaves fill a black tray on a rack. Several small hoses snake into the tray, and a white wall covered with a piece of aluminum foil is visible behind it.
Outredgeous romaine lettuce grows inside a laboratory at NASA’s Kennedy Space Center in Florida for preflight testing of Plant Habitat-07.
NASA

A current investigation, Plant Habitat-07, looks at how plants and their associated communities of microorganisms respond to different levels of water. The study uses ‘Outredgeous’ red romaine lettuce, a food crop already known to grow well on the International Space Station. Results from this investigation could inform ways to produce healthy crops under different water conditions in space and on Earth.

Multiple studies of plants on the space station have tested a wide range of crops and methods for growing them. Researchers have successfully grown lettuces, Chinese cabbage, mustard greens, kale, tomatoes, radishes, and chile peppers in space. Here are details on results from earlier plant studies.

Better lighting

Hague, wearing a light blue short-sleeved t-shirt and blue latex gloves, smiles at the camera. He is next to green leafy plants growing in a black tray with a plastic frame around the bottom.
NASA astronaut Nick Hague harvests Mizuna mustard greens for VEG-04.
NASA

The Veg-04A and Veg-04B investigations looked at the effects of light quality and fertilizer on plant growth in space. Researchers found differences in yield and nutritional content depending on how leafy greens are grown and harvested – including choice of light spectrum (red versus blue), a consideration for design of future plant growth facilities.

It’s in their genes

A handful of small green seedlings with long white, branching roots are visible in a line inside a clear 4-inch square Petri plate that is marked with a six-by-six grid of lines.
Arabidopsis thaliana plants grow in the type of nutrient gel Petri plate used for APEX-04.
Anna-Lisa Paul, University of Florida

APEX-04 studied molecular changes in thale cress seedlings. Researchers found differences in the expression of specific genes in the root systems of the plants, including two genes not previously known to influence root development. This finding could identify ways to genetically modify plants to grow better on future long-duration missions.

Four rectangular seed cassettes, silver with orange around the top, are mounted on a white base along with a small gold mechanical box. The base is connected to a metal arm.
European Modular Cultivation System Seed Cassettes used for the Plant RNA Regulation investigation.
NASA

Plant Signaling, a NASA investigation conducted in cooperation with ESA (European Space Agency), studied the effects of various gravity levels on plant seedlings, and Plant RNA Regulation compared gene expression involved in the development of roots and shoots in microgravity and simulated 1 g (Earth’s gravity). Both investigations used the European Modular Cultivation System, a centrifuge that creates 1 g in space and makes it possible to examine the effects of partial gravity. The investigations found increases in the expression of some genes, such as those involved in light response, and decreases in expression of others, including defense response. These findings can help inform design of space-based plant growth facilities.

And in their hormones

Auxins are plant hormones that affect processes such as root growth. Gravity affects the abundance of these hormones and their movement within a plant. Auxin Transport, an investigation from JAXA (Japan Aerospace Exploration Agency), examined the role of auxins in controlling growth of pea and maize seedlings in microgravity. Researchers found that microgravity caused decreases in hormones involved in determining direction of growth in pea seedlings and increases of those same hormones in maize seedlings. Understanding how microgravity affects plant hormonal pathways could hep improve the design of space-based plant growth systems.

Growth and gravity

Plant development on Earth is strongly influenced by gravity, but exactly how that works at the molecular level is not well understood. APEX-03-1 investigated the effects of microgravity on plant development and, along with previous studies, showed that spaceflight triggers changes in the development of cell walls in plant roots. Strong cell walls provide mechanical strength needed for roots to grow, and this finding provides insight into how to develop plants that are well-adapted to space conditions.

Nyberg is wearing a blue polo shirt, shorts, and white latex gloves. Her hair is in a ponytail that floats above her head. In front of her on a silver work surface is a square plastic dish about the size of a pack of cards containing small seedlings. Nyberg is using a small metal clamp in her left hand to hold the plants and a pair of clippers in her right hand to harvest the seedlings.
NASA astronaut Karen Nyberg harvests samples for the Resist Tubule investigation.
NASA

JAXA’s Resist Tubule also studied the mechanisms of gravity resistance in plants. Researchers found that thale cress plants grown in microgravity exhibited reduced levels of sterols, compounds involved in a variety of cellular processes, which could limit plant growth. These findings could help scientists genetically engineer plants that grow better in microgravity.

Melissa Gaskill
International Space Station Research Communications Team

Johnson Space Center

NASA’s Kennedy Space Center Looks to Thrive in 2025

18 December 2024 at 11:03
Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near the headquarters building of the agency’s Kennedy Space Center in Florida.
NASA/Ben Smegelsky

As NASA’s Kennedy Space Center in Florida wraps up a year that will see more than 90 government, commercial, and private missions launch from Florida’s Space Coast, a look to 2025 shows the missions, partnerships, projects, and programs at the agency’s main launch site will continue innovating, inspiring, and pushing the boundaries of exploration for the benefit of humanity.

“The next year promises to be another exciting one at Earth’s premier spaceport,” said Kennedy Center Director Janet Petro. “We have an amazing workforce, and when we join forces with industry and our other government partners, even the sky is no limit to what we can accomplish.”

New Year, New Missions to Space Station

NASA’s Commercial Crew Program (CCP), based out of Kennedy, and its commercial partner SpaceX plan two crew rotation missions to the International Space Station: NASA’s SpaceX Crew-10 and Crew-11. This also means the return of the Crew-9 mission and later Crew-10 during 2025. CCP continues working with Boeing toward NASA certification of the company’s Starliner system for future crew rotations to the orbiting laboratory.

NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA's Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.
NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA astronauts Commander Anne McClain and Pilot Nichole Ayers.
SpaceX

“Operations in 2025 are a testament to NASA’s workforce carefully planning and preparing to safely execute a vital string of missions that the agency can depend on,” said Dana Hutcherson, CCP deputy program manager. “This is the 25th year of crewed operations for the space station, and we know that with every launch, we are sustaining a critical national asset and enabling groundbreaking research.”

NASA also plans several Commercial Resupply Services missions, utilizing SpaceX’s Dragon cargo spacecraft, Northrop Grumman’s Cygnus spacecraft, and the inaugural flight of Sierra Space’s cargo spaceplane, Dream Chaser.  The missions will ferry thousands of pounds of supplies, equipment, and science investigations to the crew aboard the orbiting laboratory from NASA Kennedy and nearby Cape Canaveral Space Force Station.

The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. Liftoff was at 9:29 p.m. EST.
SpaceX

In addition to the agency’s crewed flights, Axiom Space’s fourth crewed private spaceflight mission, Axiom Mission 4 – organized in collaboration with NASA through the International Space Station Program and operated by SpaceX – will launch to the orbital outpost.  

Reestablishing Humanity’s Lunar Presence

Preparations for NASA’s Artemis II test flight mission are ramping up, with all major components for the SLS (Space Launch System) hardware undergoing processing at Kennedy, including the twin solid rocket boosters and 212-foot-tall core stage. Teams with EGS (Exploration Ground Systems) will continue stacking the booster segments inside the spaceport’s VAB (Vehicle Assembly Building). Subsequent integration and testing of the rocket’s hardware and Orion spacecraft will continue not only for the Artemis II mission, but for Artemis III and IV. Technicians also continue building mobile launcher 2, which will serve as the launch and integration platform for the SLS Block 1B configuration starting with Artemis IV.

Teams with NASA’s Exploration Ground Systems transport the agency’s 212-foot-tall SLS (Space Launch System) core stage into High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Wednesday, Dec. 11, 2024. The one-of-a kind lifting beam is designed to lift the core stage from the transfer aisle to High Bay 2 where it will remain while teams stack the two solid rocket boosters on top of mobile launcher 1 for the SLS core stage.
NASA/Kim Shiflett

“Looking ahead to 2025, teams will embark on a transformative year as we integrate the flight hardware for Artemis II, while simultaneously developing the foundation for future Artemis missions that will reestablish humanity’s presence on the Moon,” said Shawn Quinn, EGS program manager.

A key part of the Artemis campaign, NASA’s CLPS (Commercial Lunar Payload Services) initiative will continue leveraging commercial partnerships to quickly land scientific instruments and technology demonstrations on the Moon. Firefly Aerospace’s first lunar CLPS flight, Blue Ghost Mission 1, will carry 10 NASA science and technology instruments to the lunar surface, including the Electrodynamic Dust Shield, a technology built by Kennedy engineers. Intuitive Machines, meanwhile, will embark on its second CLPS flight to the Moon. Providing the first in-situ resource utilization demonstration on the lunar surface, IM-2 will carry the Polar Resources Ice Mining Experiment-1 (PRIME-1), which features The Regolith and Ice Drill for Exploring New Terrain from Honeybee Robotics, as well as the Mass Spectrometer Observing Lunar Operations built by Kennedy. Both flights are targeted to lift off from Kennedy’s Launch Complex 39A during the first quarter of 2025.

As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.
As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.
Firefly Aerospace

In development for Artemis IV and beyond, Gateway will be a critical platform for developing a sustained human presence beyond low Earth orbit. Deep Space Logistics (DSL) is the Gateway Program project office at Kennedy responsible for leading the development of a commercial supply chain in deep space. In 2025, DSL will continue developing the framework for the DSL-1 mission and working with commercial provider SpaceX to mature spacecraft design. Upcoming milestones include a system requirements review and preliminary design review to determine the program’s readiness to proceed with the detailed design phase supporting the agency’s Gateway Program and Artemis IV mission objectives.

Science Missions Studying Our Solar System and Beyond

NASA’s Launch Services Program (LSP), based at Kennedy, is working to launch three ambitious missions. Launching early in the year on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) is a space telescope to survey the universe using visible and near-infrared light, observing more colors than ever before and allowing astronomers to piece together a three-dimensional map of the universe with stunning accuracy. Launching with SPHEREx, NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will study how the mass and energy of the Sun’s corona transition into the solar wind.

NASA’s SPHEREx space observatory was photographed at BAE Systems in Boulder, Colorado, in November 2024 after completing environmental testing. The spacecraft’s three concentric cones help direct heat and light away from the telescope and other components, keeping them cool.
NASA’s SPHEREx space observatory was photographed at BAE Systems in Boulder, Colorado, in November 2024 after completing environmental testing. The spacecraft’s three concentric cones help direct heat and light away from the telescope and other components, keeping them cool.
BAE Systems

IMAP (Interstellar Mapping and Acceleration Probe), scheduled to launch from Cape Canaveral in late 2025, will help map out thethe heliosphere – the magnetic environment surrounding and protecting our solar system. Carrying 10 instruments to make its observations, the IMAP mission is targeting the L1 Lagrange Point, an area between Earth and the Sun that is easy for spacecraft to maintain orbit, along with two Sun observing rideshare missions – NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow-On at L1). Also launching in late 2025 on a Falcon 9 from Vandenberg is the second of two identical satellites, Sentinel-6B, which will monitor global sea levels with unprecedented precision. Its predecessor, Sentinel-6 Michael Freilich, has been delivering crucial data since it launched in 2020, and Sentinel-6B will ensure the continuation of this mission through 2030.

“Our missions launching next year will include groundbreaking technologies to help us learn more about the universe than ever before and provide new data for researchers that will have positive benefits here on Earth,” said LSP’s Deputy Program Manager Jenny Lyons.

NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) identical dual spacecraft are inspected and processed on dollies in a high bay of the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Thursday, Aug. 22, 2024. As the first multi-spacecraft orbital science mission to Mars, ESCAPADE’s twin orbiters will take simultaneous observations from different locations around the planet and reveal the real-time response to space weather and how the Martian magnetosphere changes over time.
NASA/Kim Shiflett

The program’s support for small satellite missions next year includes several missions to monitor the Sun, collect climate data, and more. NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission to explore Mars’ magnetosphere will lift off from Cape Canaveral’s Launch Complex 36 on NASA’s inaugural flight of Blue Origin’s New Glenn rocket. Some of these small satellite missions are part of NASA’s CubeSat Launch Initiative, which offers the next generation of scientists, engineers, and technologists a unique opportunity to conduct scientific research and develop and demonstrate novel technologies in space.

Building the Spaceport’s Future

Teams expect a busy year of construction projects to accommodate new missions, hardware, and milestones. In preparation for Artemis IV, mobile launcher 2 construction and modifications in the VAB’s High Bays 3 and 4 for the larger SLS Block 1B configuration will ramp up. Teams also will upgrade the spaceport’s Converter Compressor Facility (CCF) to meet the helium needs of its commercial launch partners and the Artemis campaign, increasing efficiency, reliability, and speed of pumping helium to rockets. Upgrades to the CCF’s internal infrastructure are also part of Kennedy’s plan to earn the U.S. Green Building Council’s Leadership in Energy and Environmental Design certification, joining nine other Kennedy facilities in achieving that rating.

Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The iconic Vehicle Assembly Building, currently used for assembly of NASA’s Space Launch System rocket for Artemis missions, remains the only building in which rockets were assembled that carried humans to the surface of another world.
NASA/Ben Smegelsky

“Kennedy’s spaceport will continue to see its launch cadence grow, and we have to meet our program and commercial partner needs in the most efficient way possible,” said Sasha Sims, deputy director of Kennedy’s Spaceport Integration and Services Directorate. “Process improvements and integrated approaches should improve the speed at which government and commercial construction takes place while also improving Kennedy’s infrastructure so that it’s robust, sustainable, and able to support America’s future in space.”

Driving down acquisition costs, increasing competition, and using innovative contracting mechanisms for construction are just some of the initiatives to maximize efficiency and reliability in 2025. The center’s “Critical Day” policy prohibits certain types of work during launches requiring full flight range support but will no longer apply to commercial launches where minimal flight range support is required, training events, static fires, exercises, tests, rehearsals, nor other activities leading up to or supporting launches. This policy change is expected to create more flexibility and free up over 150 days annually for construction, maintenance, and other essential work needed to keep the spaceport running smoothly.

Finally, Kennedy will continue carrying Apollo’s legacy through Artemis. Seeds that traveled aboard the Orion spacecraft during the Artemis I mission will be planted at the spaceport, honoring the legacy of the original Moon Trees that grew from seeds flown on Apollo 14. The Florida spaceport will become one of the select locations across the country where the “new generation” of Moon Trees will take root and provide living testimony to the agency’s continuing legacy of lunar exploration.

“With so many missions and initiatives on the horizon, I’m looking forward to another banner year at Kennedy Space Center,” Petro said. “We truly are launching humanity’s future.”

NASA Sets Coverage for Roscosmos Spacewalk 63 Outside Space Station

17 December 2024 at 14:31
Caption: Expedition 70 Flight Engineer Nikolai Chub from Roscosmos is pictured during a spacewalk to inspect a backup radiator, deploy a nanosatellite, and install communications hardware on the International Space Station’s Nauka science module.
Credit: NASA

NASA will provide live coverage as two Roscosmos cosmonauts conduct a spacewalk outside of the International Space Station on Thursday, Dec. 19.

NASA’s live coverage begins at 9:45 a.m. EST, Thursday on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. The spacewalk is scheduled to begin at approximately 10:10 a.m. and last about six and a half hours.

Expedition 72 crewmates Alexey Ovchinin and Ivan Vagner will venture outside the station’s Poisk module to install an experiment package designed to monitor celestial x-ray sources and new electrical connector patch panels and remove several experiments for disposal. The two cosmonauts also will relocate a control panel for the European robotic arm, which is attached to the Nauka multipurpose laboratory module. Roscosmos cosmonaut Alexsandr Gorbunov will operate the arm during the spacewalk from inside the station.

Roscosmos spacewalk 63 will be the second for Ovchinin and the first for Vagner. Ovchinin will wear an Orlan spacesuit with red stripes, and Vagner will wear a spacesuit with blue stripes. It will be the 272nd spacewalk in support of space station assembly, maintenance, and upgrades.

Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X.

Learn more about the International Space Station at:

https://www.nasa.gov/station 

-end-

Claire O’Shea / Josh Finch
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share

Details

Last Updated
Dec 17, 2024

Station Science Top News: Dec. 13, 2024

16 December 2024 at 16:12

Benchmarks for solidifying metal alloys

Researchers report benchmark data for modeling the growth of specific types of microstructures that form during solidification of metal alloys under different conditions. These microstructures affect the properties of materials and products such as refrigeration devices and solar cells.

The ESA (European Space Agency) Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) investigation studied the processes of metal alloy solidification and the crystal patterns that form as liquids transition to solids. Results could improve ground-based development of lightweight, high-performance structural materials for space and ground applications. Microgravity is key to this research because it eliminates influences of gravity during solidification and allows researchers to control turbulence and convection.

An astronaut aboard the International Space Station holds a metal bar with both hands while working in a space station module filled with cables, equipment, and storage compartments. He wears a light gray t-shirt and blue pants.
European Space Agency (ESA) astronaut Frank De Winne works on the Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) investigation in the U.S. Destiny Laboratory.
NASA

Composite materials shield against radiation, other hazards

Researchers found no degradation in two multifunctional radiation shielding composite materials after exposure to space. This finding suggests that composite materials with a surface layer and a coating could protect crews on future missions from radiation and other hazards of space.

Materials ISS Experiment Flight Facility (MISSE-FF) continued a series of investigations examining how exposure to space affects materials and material configurations used for space missions. The MISSE-13 suite of materials included a multifunctional composite material for shielding crew members in habitats and spacecraft beyond low Earth orbit against radiation, atomic oxygen, and temperature extremes.

An image of the Materials ISS Experiment Flight Facility (MISSE-FF) platform used for MISSE experiments.
NASA

Modeling the use of boiling to transfer heat

Researchers developed an algorithm to determine the amount of heat transferred via boiling of a liquid and showed that maximum heat flow occurs where the bubble contacts the surface and the liquid. This finding could inform design of thermal control systems for spacecraft and for cooling electronics and other applications on Earth.

ESA’s Multiscale Boiling examined the dynamics of heat transfer via boiling, which generates vapor bubbles that lift heat from a surface. This technique is less efficient in microgravity because boiling happens more slowly, and bubbles remain near the surface in the absence of buoyancy. But microgravity also makes it possible to observe effects that are too fast and too small to be measured under normal gravity conditions, helping scientists understand the dynamics of boiling heat transfer.

An astronaut aboard the International Space Station works with cables and tools while floating in a module filled with equipment, wires, and storage containers. The astronaut is wearing gloves, a black T-shirt, and green pants.
ESA astronaut Luca Parmitano works on the Multiscale Boiling hardware aboard the International Space Station.
ESA/Luca Parmitano

NASA Kennedy Top 24 Stories of 2024

12 December 2024 at 13:59
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024.
SpaceX

From sending crew members to the International Space Station to launching a spacecraft to Jupiter’s icy moon Europa to determine if it could support life, 2024 was a busy record setting year for NASA and its partners at Kennedy Space Center in Florida.

JANUARY
First Lunar Lander Takes Flight

The first flight of NASA’s CLPS (Commercial Lunar Payload Services) initiative lifted off with Astrobotic’s Peregrine Mission One lunar lander aboard the inaugural launch of United Launch Alliance’s (ULA) Vulcan rocket on Jan. 8 from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida to study the lunar exosphere, thermal properties, and magnetic fields on the Moon’s surface. This mission became the first U.S. commercial lander to launch to the lunar surface; however, the spacecraft experienced a propulsion issue that prevented the landing on the Moon.

A United Launch Alliance Vulcan rocket carrying Astrobotic’s Peregrine lunar lander lifts off at 2:18 a.m. EST from Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on Monday, Jan. 8, 2024.
NASA/Kim Shiflett

JANUARY
Third Private Mission to Space

At the world’s premier multi-user spaceport, the four-person crew of Axiom Mission 3 became the third private astronaut mission to launch to the International Space Station on Jan. 18 from Launch Complex 39A. The crew completed more than 30 research experiments developed for microgravity in collaboration with organizations across the globe.

A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft for Axiom Space’s Mission 3 to the International Space Station lifts off at 4:49 p.m. EST from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Jan. 18, 2024.
NASA/Chris Swanson

JANUARY
Food and Supplies Delivered to the International Space Station

Northrop Grumman’s Cygnus spacecraft launched on a SpaceX Falcon 9 rocket for the first time on Jan. 30 from Space Launch Complex 40 at Cape Canaveral Space Force Station. The company’s 20th resupply mission brought 8,200 pounds of science investigations, supplies, and equipment to the International Space Station.

Commercial Resupply Mission to space station
YouTube

FEBRUARY
Understanding Earth’s Climate

NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) is a mission to observe and explore what makes Earth so different from every other planet we study – life itself. Three-quarters of our home planet is covered by water, and PACE’s advanced instruments provide new ways to study life at the ocean’s surface by measuring the abundances and distributions of microscopic algae known as phytoplankton. The observations are helping researchers better monitor ocean health, air quality, and climate change. PACE launched on a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station’s Space Launch Complex 40 on Feb. 8.

A SpaceX Falcon 9 rocket with NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) spacecraft stands vertical at Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Monday, Feb. 5, 2024.
SpaceX

FEBRUARY
Intuitive Machines First Mission Lands on Moon

NASA’s CLPS initiative with Intuitive Machines’ made history when the Nova C-class lunar lander launched from Kennedy and later arrived on the Moon’s South Pole region known as Malapert A on Feb. 22.

IM-1, the first NASA Commercial Launch Program Services. launch for Intuitive Machines’ Nova-C lunar lander, will carry multiple payloads to the Moon, including Lunar Node-1, demonstrating autonomous navigation via radio beacon to support precise geolocation and navigation among lunar orbiters, landers, and surface personnel.
NASA/Marshall Space Flight Center

FEBRUARY
Artemis II Practice Procedures

Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA’s Exploration Ground System’s Landing and Recovery Team, and partners from the Department of Defense participated in the Underway Recovery Test 11 off the coast of San Diego. The operation mimicked procedures that will be used to recover the Artemis II crew and the Orion spacecraft after their return from the Moon, with the crew exiting a mockup of Orion into a boat and then ferried to a U.S. Navy ship.

During sunrise over the Pacific Ocean, members of NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the USS San Diego practice recovery procedures using the Crew Module Test Article during Underway Recovery Test 11 (URT-11) off the coast of San Diego on Friday, Feb. 23, 2024.
NASA/Kenny Allen

MARCH
NASA’s SpaceX Crew-8 Quartet Launches to Space Station

NASA astronauts Matt Dominick, Michael Barratt, and Jeanette Epps, along with Roscosmos cosmonaut Alexander Grebenkin launched March 3 from Kennedy’s Launch Complex 39A on an eight-month science mission aboard the International Space Station.

A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft launches NASA’s SpaceX Crew-8 mission to the International Space Station on Sunday, March 3, 2024, from NASA’s Kennedy Space Center in Florida.
NASA/Cory S Huston

MARCH
NASA’s SpaceX 30th Commercial Resupply Mission

Research and technology demonstrations, along with food and other supplies launched to the International Space Station aboard NASA’s SpaceX commercial resupply mission. A SpaceX Falcon 9 rocket carrying a Dragon spacecraft launched March 21 from Space Launch Complex 40.

A SpaceX Falcon 9 rocket soars after its liftoff from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida at 4:55 p.m. EDT on Thursday, March 21, on the company’s 30th Commercial Resupply Services mission for the agency to the International Space Station.
NASA/Glenn Benson

APRIL
Solar Eclipse Captivates Nation

A total solar eclipse moved across North America, passing over Mexico, United States, and Canada on April 8. Kennedy provided coverage on air and online from every city’s point of totality for viewers at home.

Solar prominences are seen during a total solar eclipse in Dallas, Texas on Monday, April 8, 2024.
NASA/Keegan Barber

MAY
NASA Welcomes New Commercial Resupply Spacecraft

Sierra Space’s Dream Chaser arrived at Kennedy on May 18 following testing at the agency’s Armstrong Test Facility in Sandusky, Ohio. The uncrewed spaceplane is scheduled to launch aboard a ULA Vulcan rocket from Space Launch Complex 41 at Cape Canaveral Space Force Station in 2025, delivering thousands of pounds of cargo to the orbiting laboratory.

Dream Chaser Tenacity, Sierra Space’s uncrewed cargo spaceplane is lifted and moved by crane inside the Space Systems Processing Facility (SSPF) at NASA’s Kennedy Space Center in Florida on Monday, May 20, 2024.
Sierra Space/Shay Saldana

MAY
Historic Marker Honors Original Headquarters Location

Officials unveiled a large bronze historical plaque on May 28 to mark the location of NASA’s Kennedy Space Center’s original headquarters building just west of the current Central Campus Headquarters Building on NASA Parkway.

From the left, NASA Kennedy Space Center’s, Maui Dalton, project manager, engineering; Katherine Zeringue, cultural resources manager; Janet Petro, NASA Kennedy Space Center director; and Ismael Otero, project manager, engineering, present a large bronze historical marker plaque at the location of NASA Kennedy’s original headquarters building on Tuesday, May 28, 2024.
NASA/Mike Chambers

JUNE
NASA’s Boeing Crew Flight Test Launches First Crew

NASA astronauts Butch Wilmore and Suni Williams became the first crew to fly aboard Boeing’s Starliner spacecraft. Starliner launched on June 6 atop ULA’s Atlas V rocket from Space Launch Complex 41 as part of NASA’s Boeing Crew Flight Test to the International Space Station.

Image shows rocket soaring into the sky with the bright sun in the background at NASA's Kennedy Space Center.
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station, Wednesday, June 5, 2024, in Florida.
NASA/Joel Kowsky

JUNE
Final NASA, NOAA GOES-R Launch

NOAA’s (National Oceanic and Atmospheric Administration) GOES-U (Geostationary Operational Environmental Satellite U) launched June 25 from Launch Complex 39A at Kennedy. The GOES-U satellite is the last of NOAA’s GOES-R Series, and it carries seven instruments that collect advanced imagery and atmospheric measurements, provide real-time mapping of lightning activity, and detect approaching space weather hazards.

Technicians prepare NOAA’s (National Oceanic and Atmospheric Administration) Geostationary Operational Environmental Satellite (GOES-U) for encapsulation inside payload fairing halves on Thursday, June 13, 2024, at the Astrotech Space Operations facility in Titusville near NASA’s Kennedy Space Center in Florida.
NASA/Ben Smegelsky

JULY
Barge Carries Artemis II Core Stage to Kennedy

NASA’s SLS (Space Launch System) Moon rocket that will power humans to the Moon arrived July 24 at Kennedy. NASA’s Pegasus barge ferried the 212-foot-tall core stage from NASA’s Michoud Assembly Facility in New Orleans. The core stage remains at the Vehicle Assembly Building awaiting integration ahead of the Artemis II launch.

Artemis II core state arrives at Kennedy
YouTube

AUGUST
NASA, Northrop Grumman Launch Supplies to Space Station

NASA science investigations, supplies, and equipment launched on Aug. 24 aboard a Cygnus spacecraft from Space Launch Complex 40 as part of Northrop Grumman’s 21st commercial resupply mission to the International Space Station.

Launch of a SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus spacecraft to the International Space Station.
SpaceX

SEPTEMBER
NASA’s Boeing Crew Flight Test Spacecraft Safely Lands

An uncrewed Boeing Starliner spacecraft undocked from the space station and landed on Sept. 7 at White Sands Space Harbor in New Mexico, completing a three-month flight test to the orbiting laboratory.

Boeing and NASA teams work around NASA’s Boeing Crew Flight Test Starliner spacecraft after it landed uncrewed.
NASA/Aubrey Gemignani

SEPTEMBER
NASA’s SpaceX Crew-9 Duo Heads to Space

NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov launched to the International Space aboard a SpaceX Dragon spacecraft on Sept. 28 for a roughly five-month mission as part of NASA’s SpaceX Crew-9 mission. The launch was the first crewed mission from Space Launch Complex 40. Hague, Gorbunov, along with NASA astronauts Butch Wilmore and Suni Williams, are slated to return to Earth in early 2025.

NASA astronaut Nick Hague (left) and Roscosmos cosmonaut Aleksandr Gorbunov walk through the crew access arm connecting the launch tower to the SpaceX Dragon spacecraft on Saturday, Sept. 28, 2024.
SpaceX

OCTOBER
Mobile Launcher on the Move

NASA’s mobile launcher 1 made the 4.2-mile trek on Oct. 4 from Launch Complex 39B to the Vehicle Assembly Building in preparation for stacking the Artemis II Moon rocket. The mobile launcher had been at the launch pad since August 2023 undergoing integrated testing and upgrades. NASA’s crawler-transporter 2 also achieved a milestone reaching 2,500 miles traveled since its construction in 1965.

Mobile launcher rolls back to Vehicle Assembly Building
YouTube

OCTOBER
Jupiter Moon Mission Takes Flight

NASA’s Europa Clipper is the agency’s first mission to study Jupiter’s icy moon Europa to see if the ocean beneath the moon’s crust has the ingredients to support life. The spacecraft launched Oct. 16 aboard a SpaceX Falcon Heavy rocket from Launch Complex 39A. The Europa Clipper spacecraft will reach Europa in 2030.

A reflection in the water shows NASA’s Europa Clipper spacecraft atop SpaceX’s Falcon Heavy rocket at Launch Pad 39A on Sunday, Oct. 13, 2024, at the agency’s Kennedy Space Center in Florida.
SpaceX

OCTOBER
NASA’s SpaceX Crew-8 Back on Earth

NASA’s SpaceX Crew-8 astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, splashed down in their SpaceX Dragon spacecraft off the coast of Pensacola, Florida, on Oct. 25, completing a seven-month science mission aboard the International Space Station.

The SpaceX Crew Dragon Endeavour spacecraft is seen as it lands Friday, Oct. 25, 2024.
NASA/Joel Kowsky

NOVEMBER
New Science and Supplies Sent to Space Station

A SpaceX Dragon spacecraft on a Falcon 9 rocket carrying more than 6,000 pounds of supplies launched Nov. 4, from Launch Complex 39A bound for the space station. The commercial resupply mission delivered essential supplies and supports dozens of research experiments during Expedition 72.

The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station.
SpaceX

NOVEMBER
NASA’s Artemis II Booster Segments Take Shape

Engineers and technicians with the Exploration Ground Systems Program began stacking on Nov. 20, the first segment of the Artemis II SLS solid rocket boosters onto mobile launcher 1 inside the Vehicle Assembly Building.

An overhead crane lifts a portion of the solid rocket booster with the core stage rocket inside the Vehicle Assembly Building.
Down the transfer aisle from the Artemis II SLS (Space Launch System) core stage, an overhead crane hoists the left aft assembly, or bottom portion of the solid rocket boosters for the SLS Moon rocket inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Tuesday, Nov. 19, 2024.
NASA/Kevin Davis

DECEMBER
Record-Setting Year of Launches

More than 80 launches roared into space from Kennedy and Cape Canaveral in 2024, and 2025 promises to bring even more government and commercial missions to the Eastern Range.

Image shows a rocket lifting off from a launch pad at NASA's Kennedy Space Center
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024.
SpaceX

💾

Tests of a 3D metal printer and thermal protection systems for reentry to Earth’s atmosphere are among the scientific investigations that NASA and internatio...

Science Photo Album Showcases Space Station Research in 2024

11 December 2024 at 12:00
Three astronauts, all wearing black, are facing the camera and looking out a cupola window, where Earth is visible above them. Barratt, on the left, holds a handrail with his left hand and points a camera toward Earth with his right hand, squinting his left eye. Dominick, center, smiles with eyes toward the window, and O’Hara, on the right, uses both hands to point a camera with a large lens at Earth. The camera obscures her face.
NASA Astronauts (from left) Mike Barratt, Matthew Dominick, and Loral O’Hara take photographs of Earth from inside the cupola aboard space station.
Credit: NASA

That’s a wrap! Astronauts aboard the International Space Station conducted hundreds of science experiments and technology demonstrations during 2024. Crew members participated in research across a variety of scientific disciplines and accomplished milestones demonstrating benefits for future missions and humanity back on Earth. Their work included snapping thousands of images of Earth to understand our planet’s changing landscape, bioprinting cardiac tissues to validate technology for organ manufacturing in space, and studying physical phenomena that could improve drug delivery systems and technology for plant growth in reduced gravity.


This new image gallery showcases dozens of awe-inspiring photos and includes details about the research benefits of the state-of-the-art science happening aboard space station.


Discover the best science images of 2024 from your orbiting lab.

Space Meets Sound: NASA Lands in 2024 Spotify Wrapped

10 December 2024 at 16:27
NASA’s podcasts let you experience the thrill of space exploration without ever leaving Earth.
Credit: NASA

NASA’s audio storytelling reached new frontiers in 2024, with Spotify Wrapped revealing the agency’s podcasts as a favorite among listeners worldwide. In celebration of the milestone, NASA astronaut Nick Hague spoke with Spotify about what space sounded like this year.

“Music is one of those things that connects us to the planet,” said Hague, in the video released on Spotify and NASA social accounts. “Music is a vital part of life up here. The soundtrack up here, it’s just going all the time. Everybody’s got their own flavor of music. Every Friday night the crew gets together, we turn on music and we stream things that we like. Whether they’re into pop or hard rock, it’s an international mix. When I think of space walks, I think of classical music, slow, methodical tunes, because that is the way that we conduct spacewalks. Slowly and methodically. Classical music captures the essence of, just floating in space.”

With listeners in more than 100 countries, NASA podcasts reached new audiences and inspired people around the world on Spotify this year. Other 2024 highlights included:

  • Ranked as a top choice for thousands of listeners seeking to learn about science and space.
  • Spent a combined 37 weeks in Spotify’s top charts for science podcasts.
  • The top streamed podcast was “NASA’s Curious Universe”, and the top streamed episode was “A Year in Mars Dune Alpha.”

“We’re thrilled to have our space-centric content featured in Spotify Wrapped 2024,” said Brittany Brown, director of digital communications, NASA Headquarters in Washington. “Our collaboration with Spotify is a testament to NASA’s commitment to producing innovative and engaging content. We’re excited to see how audiences continue to respond to this unique listening experience only NASA can provide.”

The agency’s podcasts cover a wide range of topics, including in-depth conversations with NASA astronauts, stories that take audiences on a tour of the galaxy, and Spanish-language content.

“Music, just like space, connects us all,” said Katie Konans, audio program lead, eMITS contract with NASA. “Our partnership with Spotify has allowed NASA to share the wonder and excitement of space with music and podcast lovers globally. This year, we’re thrilled to take this connection to new heights by bringing the Spotify Wrapped 2024 conversation beyond planet Earth.”

NASA released its collection of original podcasts on Spotify in 2023, furthering the agency’s mission to engage the Artemis Generation in the science, space exploration, and discovery.

In addition to Spotify, users may find NASA podcasts on Apple Podcasts, Google Podcasts, and Soundcloud.

Discover all of NASA’s podcasts at:

https://www.nasa.gov/podcasts

-end-

Abbey Donaldson
Headquarters, Washington
202-358-1600
abbey.a.donaldson@nasa.gov

Station Science Top News: Dec. 6, 2024

9 December 2024 at 15:01

Astronaut cognitive performance remains generally stable

Researchers found that astronauts on six-month missions to the International Space Station demonstrated generally stable cognitive performance but mild changes in certain areas, including processing speed, working memory, attention, and willingness to take risks. This research provides baseline data that could help identify cognitive changes on future missions and support development of appropriate countermeasures.

Research to date has suggested mild decreases in some cognitive performance domains during spaceflight, likely influenced by spaceflight stressors such as radiation and sleep disruption. Longer missions represent greater exposure to these hazards and possible increases in individual vulnerabilities to them. Standard Measures collects a set of psychological and physiological measurements related to human spaceflight risks, including a cognition test battery, from astronauts before, during, and after missions. This paper includes the largest sample of professional astronauts published to date.

A NASA astronaut works on a laptop aboard the International Space Station.
NASA astronaut Kjell Lindgren performs a cognition test on the space station.
NASA

Scientific discoveries result from NSF/CASIS research

Researchers published highlights of discoveries resulting from a collaboration between the National Science Foundation (NSF) and the Center for the Advancement of Science in Space (CASIS) in support of research on transport phenomena in space. A few examples include:

  • combustion studies that advance our understanding of soot formation, wildfires, flame-spread in buildings, and other fundamental combustion phenomena important in everyday life on Earth
  • heat transfer studies that provide insight into how the physics of evaporation and condensation affect cooling systems on spacecraft and in microelectronics and other industries on the ground
  • fluid dynamics studies validating theories of how drops spread, relevant to the design of thermal management systems and for fluid processing on spacecraft, as well as in medical devices and other ground-based applications

Removing gravity enables research on fundamental physical phenomena that is difficult or impossible to conduct on Earth. The investigations that led to the findings above are Spherical Cool Flames, which observed the chemical reactions of cool diffusion flames for insight into combustion and fire behavior; Constrained Vapor Bubble, a study of how evaporation and condensation affect the efficiency of cooling devices; and Capillary Flow Experiment 2, research on wetting (a liquid’s ability to spread across a surface) to support design of better systems to process liquids.

An ESA astronaut conducts an experiment aboard the International Space Station.
European Space Agency astronaut Alexander Gerst works on the Capillary Flow Experiment.
NASA

NASA Accelerates Space Exploration, Earth Science for All in 2024

6 December 2024 at 16:54

With a look back at 2024, NASA is celebrating its many innovative and inspiring accomplishments this year including for the first time, landing new science and technology on the Moon with an American company, pushing the boundaries of exploration by launching a new mission to study Jupiter’s icy moon Europa; maintaining 24 years of continuous human exploration off the Earth aboard the International Space Station, and unveiling the first look at its supersonic quiet aircraft for the benefit of humanity.

The agency also shared the wonder of a total eclipse with millions of Americans, conducted the final flight of its Ingenuity helicopter on the Red Planet, demonstrated the first laser communications capability in deep space, tested the next generation solar sail in space, made new scientific discoveries with its James Webb Space Telescope, completed a year-long Mars simulation on Earth with crew, announced the newest class of Artemis Generation astronauts, and much more.

“In 2024, NASA made leap after giant leap to explore, discover, and inspire – all while bringing real, tangible, and substantial benefits to the American people and to all of humanity,” said NASA Administrator Bill Nelson. “We deepened the commercial and international partnerships that will help NASA lead humanity back to the Moon and then to the red sands of Mars. We launched new missions to study our solar system and our universe in captivating new ways. We observed our changing Earth through our eyes in the sky – our ever-growing fleet of satellites and instruments – and shared that data with all of humanity. And we opened the doors to new possibilities in aviation, new breakthroughs on the International Space Station, and new wonders in space travel.” 

Through its Moon to Mars exploration approach, the agency continued moving forward with its Artemis campaign, including progress toward its first mission around the Moon with crew in more than 50 years and advancing plans to explore more of the Moon than ever before. So far in 2024, 15 countries signed the Artemis Accords, committing to the safe, transparent, and responsible exploration of space with the United States.

As part of efforts to monitor climate change, the agency launched multiple satellites to study our changing planet and opened its second Earth Information Center to provide data to a wider audience.

With the release of its latest Economic Impact Report, NASA underscored the agency’s $75.6 billion impact on the U.S. economy, value to society, and return on investment for taxpayers. 

“To invest in NASA is to invest in American workers, American innovation, the American economy, and American economic competitiveness. Through continued investments in our workforce and our infrastructure, NASA will continue to propel American leadership on Earth, in the skies, and in the stars,” said Nelson. 

Key 2024 agency highlights across its mission areas include:

Preparing for Moon, Mars

This year, NASA made strides toward the Artemis Generation of scientific discovery at the Moon while validating operations and systems to prepare for human missions to Mars. The agency advanced toward Artemis II, the first crewed flight under Artemis:

  • NASA announced results of its Orion heat shield investigation and updated its timelines for Artemis II and III.
  • Teams delivered the core stage and launch vehicle stage adapter of the SLS (Space Launch System) rocket from NASA’s Michoud Assembly Facility in New Orleans to NASA’s Kennedy Space Center in Florida and began stacking the rocket’s booster segments.
  • Engineers carried out a series of tests of the mobile launcher and systems at NASA Kennedy’s Launch Pad 39B ahead of the test flight and added an emergency egress system to keep crew and other personnel at the launch pad safe in the case of an emergency.
  • NASA performed key integrated testing of the Orion spacecraft that will send four astronauts around the Moon and bring them home, including testing inside an altitude chamber simulating the vacuum conditions of deep space.
  • The crew and other teams performed key training activities to prepare for flight, including practicing recovery operations at sea, as well as launch countdown and mission simulations. 
  • In February, the first Moon landing through the agency’s CLPS (Commercial Lunar Payload Services) initiative brought NASA science to the lunar surface on Intuitive Machines’ Nova-C lander successfully capturing data that will help us better understand the Moon’s environment and improve landing precision and safety.
  • In August, NASA announced that a new set of NASA science experiments and technology demonstrations will arrive at the lunar South Pole in 2027 following the agency’s latest CLPS initiative delivery award.
  • To return valuable samples from Mars to Earth, NASA sought innovative designs and announced a new strategy review team to assess various design studies to reduce cost, risk, and complexity.
  • NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft celebrated 10 years of exploration of the Red Planet’s upper atmosphere.
  • After three years, NASA’s Ingenuity Mars Helicopter ended its mission in January, with dozens more flights than planned.
  • In September, the NASA Space Communications and Navigation team awarded a contract to Intuitive Machines to support the agency’s lunar relay systems as part of the Near Space Network, operated by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
  • NASA identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission.
  • Capturing the current state of the Moon to Mars architecture, NASA released the second revision of its Architecture Definition Document.
  • NASA formalized two international agreements for key Artemis elements, including with the United Arab Emirates for the Gateway airlock module, and with Japan to provide a pressurized rover for the lunar surface.
  • Astronauts, scientists, and engineers took part in testing key technologies and evaluating hardware needed to work at the Moon, including simulating moonwalks in geologically Moon-like areas of Arizona, practiced integration between the crew and mission controllers, participated in human factors testing for Gateway, and evaluated the developmental hardware.
  • NASA worked collaboratively with SpaceX and Blue Origin on their human lunar landers for Artemis missions, exercising an option under existing contracts to develop cargo variants of their human landers.
  • In August, as part of its commitment to a robust, sustainable lunar exploration program for the benefit of all, NASA announced it issued a Request for Information to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER (Volatiles Investigating Polar Exploration Rover) Moon rover.
  • The agency selected three companies to advance capabilities for a lunar terrain vehicle that Artemis astronauts will use to travel around the lunar surface.
  • NASA completed a critical design review on the second mobile launcher, which will launch the more powerful Block 1B version of the SLS rocket.
  • Engineers at NASA Kennedy continued outfitting the Artemis III and IV Orion crew modules and received the European-built Orion service module for Artemis III; they also received several sections of the Artemis III and IV SLS core stages, and upgraded High Bay 2 in the Vehicle Assembly Building.
  • NASA completed its second RS-25 certification test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, setting the stage for production of new engines to help power future Artemis missions to the Moon and beyond.
  • The CHAPEA (Crew Health and Performance Exploration Analog) 1 crew completed a 378-day mission in a ground-based Mars habitat at NASA’s Johnson Space Center in Houston. 
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft launches off the coast of Florida, with blue skies and ocean in the background.
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.
Credit: NASA/Kim Shiflett
A group of new astronauts in their blue flight suits smile and wave from stage.
NASA newest class of astronauts, selected in 2021, graduate during a ceremony on March 5, 2024, at the at the agency’s Johnson Space Center in Houston.
Credit: NASA
Night vision view of Boeing's Starliner and its parachutes descending to New Mexico.
NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico.
Credit: NASA
The X-59 sits on a runway with a sunset and moutains in the background.
NASA’s X-59 quiet supersonic research aircraft sits on the apron outside Lockheed Martin’s Skunk Works facility at dawn in Palmdale, California. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to address one of the primary challenges to supersonic flight over land by making sonic booms quieter.
Credit: Lockheed Martin Skunk Works
Five NASA astronauts, three women and two men, pose for a photo together while wearing eclipse glasses. The eclipse glasses are rectangular and have two dark lenses.
Five NASA astronauts wore eye-protecting specs in anticipation of viewing the solar eclipse from the International Space Station’s cupola. The Expedition 70 crewmates had three opportunities on April 8 to view the Moon’s shadow as it tracked across the Earth surface during the eclipse.
Credit: NASA/Loral O’Hara
NASA's Ingenuity Mars Helicopter sits on the rocky and rust-colored terrain of the Red Planet in the light of the Sun.
This enhanced color view of NASA’s Ingenuity Mars Helicopter was generated using data collected by the Mastcam-Z instrument aboard the agency’s Perseverance Mars rover on Aug. 2, 2023, the 871st Martian day, or sol, of the mission. The image was taken a day before the rotorcraft’s 54th flight.
Credit: NASA
Four people in black NASA jumpsuits are standing in front of a building with NASA logos and mission patches on the wall. They are smiling and holding mission patches, posing for a group photo.
The CHAPEA crew egress from their simulated Mars mission July 6, 2024, at NASA’s Johnson Space Center in Houston. From left: Kelly Haston, Nathan Jones, Anca Selariu, and Ross Brockwell.
Credit: NASA/Josh Valcarcel
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit.
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit.
Credit: NASA/Aero Animation/Ben Schweighart
Two women are smiling and looking on as a beaming child operates a robot from a tablet.
Office of STEM Engagement Deputy Associate Administrator Kris Brown, right, and U.S. Department of Education Deputy Secretary Cindy Marten, left, watch as a student operates a robot during a STEM event to kickoff the 21st Century Community Learning Centers NASA and U.S. Department of Education partnership, Monday, Sept. 23, 2024, at Wheatley Education Campus in Washington. Students engaged in NASA hands-on activities and an engineering design challenge. 
Credit: NASA/Aubrey Gemignani
On Feb. 22, 2024, Intuitive Machines’ Odysseus lunar lander captures a wide field of view image of Schomberger crater on the Moon approximately 125 miles (200 km) uprange from the intended landing site, at approximately 6 miles (10 km) altitude.
Credit: Intuitive Machines
Four astronauts walk down a ramp in their orange suits.
NASA’s Artemis II crew members from left to right CSA (Canadian Space Agency) astronaut Jeremy Hansen, and NASA astronauts Christina Koch, Victor Glover, and Reid Wiseman walk in the well deck of the USS San Diego during Underway Recovery Test 11 (URT-11), as NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the ship practice recovery procedures using the Crew Module Test Article off the coast of San Diego, California on Tuesday, Feb. 27, 2024. URT-11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.
Credit: NASA/Isaac Watson

Observing, Learning About Earth

NASA collects data about our home planet from space and on land, helping understand how our climate on Earth is changing. Some of the agency’s key accomplishments in Earth science this year include:

  • After launching into space in February, NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite mission is successfully transmitting first-of-their-kind measurements of ocean health, air quality, and the effects of a changing climate.
  • Using the agency’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument, NASA made available new near-real time data providing air pollution observations at unprecedented resolutions – down to the scale of individual neighborhoods.
  • Launched in May and June, NASA’s PREFIRE (Polar Radiant Energy in the Far-Infrared Experiment) CubeSats started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space.
  • NASA rolled out the Disaster Response Coordination System, a new resource that delivers up-to-date information on fires, earthquakes, landslides, floods, tornadoes, hurricanes, and other extreme events to emergency managers.
  • The agency partnered with the Smithsonian National Museum of Natural History to open the Earth Information Center exhibit.

Exploring Our Solar System, Universe

NASA’s Europa Clipper embarked Oct. 14 on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. NASA collaborated with multiple partners on content and social media related to the launch, including engagements with the National Hockey League, U.S. Figure Skating, 7-Eleven, e.l.f., Girl Scouts, Crayola, Library of Congress, and others. NASA’s 2024 space exploration milestones also include: 

  • NASA’s groundbreaking James Webb Space Telescope marked more than two years in space, transforming our view of the universe as designed, by studying the most distant galaxies ever observed, while raising exciting new questions about the atmospheres of planets outside our solar system.
  • As part of an asteroid sample exchange, NASA officially transferred to JAXA (Japan Aerospace Exploration Agency) a portion of the asteroid Bennu sample collected by the agency’s OSIRIS-Rex (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission in a ceremony on Aug. 22.
  • After surviving multiple challenges this year, NASA’s Voyager mission continues to collect data on the furthest reaches of our Sun’s influences.
  • NASA selected a new space telescope for development that will survey ultraviolet light across the entire sky, called UVEX (UltraViolet Explorer).
  • This year, all remaining major components were delivered to NASA Goddard to begin the integration phase for the agency’s Nancy Grace Roman Space Telescope.
  • NASA developed, tested, and launched the patch kit that astronauts will use to repair the agency’s NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station.
  • The agency continued preparing the SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to launch by April 2025.
  • To manage the maturation of technologies necessary to develop the Habitable Worlds Observatory telescope, NASA established a project office at NASA Goddard.
  • NASA and partners declared that the Sun reached solar maximum in 2024, a period of heightened solar activity when space weather becomes more frequent.
  • The Solar and Heliospheric Observatory, a joint mission between ESA (European Space Agency) and NASA, discovered its 5,000th comet in March.
  • NASA’s Sounding Rocket Program provided low-cost access to space for scientific research, technology development, and educational missions. NASA launched 14 sounding rocket missions in 2024. Scientists announced findings from a sounding rocket launched in 2022 that confirmed the existence of a long-sought global electric field at Earth.
  • The agency established a new class of astrophysics missions, called Astrophysics Probe Explorers, designed to fill a gap between NASA’s flagship and smaller-scale missions.

Living, Conducting Research in Space

In 2024, a total of 25 people lived and worked aboard the International Space Station, helping to complete science for the benefit of humanity, open access to space to more people, and support exploration to the Moon in preparation for Mars. A total of 14 spacecraft visited the microgravity laboratory in 2024, including eight commercial resupply missions from Northrop Grumman and SpaceX, as well as international partner missions, delivering more than 40,000 pounds of science investigations, tools, and critical supplies to the space station. NASA also helped safely return the uncrewed Boeing Starliner spacecraft to Earth, concluding a three-month flight test to the International Space Station. In addition:

  • In March, NASA welcomed its newest class of Artemis Generation astronauts in a graduation ceremony. The agency also sought new astronaut candidates, and more 8,000 people applied.
  • NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, and JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa returned to Earth at the conclusion of NASA’s SpaceX Crew-7 mission aboard the International Space Station. The three crew members, along with Roscosmos cosmonaut Konstantin Borisov, splashed down in March off the coast of Pensacola, Florida, completing a six-and-a-half-month mission contributing to hundreds of experiments and technology demonstrations.
  • In June, NASA astronauts Butch Wilmore and Suni Williams safely arrived at the space station aboard Boeing’s Starliner spacecraft following launch of their flight test. With Starliner’s arrival, it was the first time in station history three different spacecraft that carried crew to station were docked at the same time. Starliner returned uncrewed in September following a decision by NASA. Wilmore and Williams, now serving as part of the agency’s Crew-9 mission, will return to Earth in February 2025.
  • NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the orbital laboratory in September to begin a six-month mission.
  • Completing a six-month research mission in September, NASA astronaut Tracy C. Dyson returned to Earth with Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub aboard the Soyuz MS-25 spacecraft.
  • NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov launched on the agency’s SpaceX Crew-9 mission to the space station.
  • Concluding a nearly eight-month science mission, NASA’s SpaceX Crew-8 mission safely returned to Earth, splashing down on Oct. 25, off the coast of Pensacola, Florida.
  • NASA and Axiom Space successfully completed the third private astronaut mission to the space station in February, following an 18-day mission, where the crew conducted 30 experiments, public outreach, and commercial activities in microgravity.
  • The agency announced SpaceX was selected to develop and deliver the U.S. Deorbit Vehicle, which will safely move the space station out of orbit and into a remote area of an ocean at the end of its operations.
  • NASA and SpaceX monitored operations as the company’s Dragon spacecraft performed its first demonstration of reboost capabilities for the space station.
  • NASA concluded the final mission of its Spacecraft Fire Safety Experiment, or Saffire, putting a blazing end to an eight-year series of investigations looking at  fire’s behavior in space.
  • A robotic surgical tool aboard space station was successfully controlled remotely by surgeons on Earth. The Robotic Surgery Tech Demo tested the performance of a small robot to evaluate the effects of microgravity and time delays between space and ground.
  • The first successful metal 3D print was conducted aboard the space station, depositing a small s-curve in liquified stainless steel for the Metal 3D Printer investigation to test additive manufacturing of small metal parts in microgravity for equipment maintenance on future long-duration missions.
  • In 2024, 17 NASA Biological and Physical Science research payloads were delivered to the orbital laboratory, spanning quantum, plant biology, and physical sciences investigations.
  • More than 825,000 photos of Earth were taken from the space station in 2024 so far, contributing to research tracking how our planet’s landscapes are changing over time. Expedition 71 produced more than 630,000 images, the most taken during a single mission. In total, more than 5.3 million photos have been taken from the space station, providing imagery for urban light studies, studies of lightning flashes, and 14 natural disaster events in 2024 alone.

Imagining Future Flight

NASA researchers worked to advance innovations that will transform U.S. aviation, furthering the Sustainable Flight National Partnership and other efforts to help the country reach net zero carbon emissions by 2050. NASA also unveiled its X-59 quiet supersonic aircraft, the centerpiece of its Quesst mission to make quiet overland supersonic flight a reality. NASA aeronautics initiatives also worked to bring air taxis, delivery drones, and other revolutionary technology closer to deployment to benefit the U.S. public and industry. Over the past year, the agency:

  • Began testing the quiet supersonic X-59’s engine ahead of its first flight.
  • Made further progress in research areas of Quesst mission, including ground recording station testing and advancement and structural tests on the aircraft.
  • Publicly unveiled the X-59 in January, providing the first look at this unique aircraft.
  • Tested a wind-tunnel model of the X-66, an experimental aircraft designed to reduce the carbon footprint.
  • Began building the X-66 simulator that will allow pilots and engineers to run real-life scenarios in a safe environment.
  • Funded new studies looking at the future of sustainable aircraft for the 2050 timeframe and beyond.
  • Built a new simulator to study how passengers may experience air taxi rides. The results will help designers create new aircraft types with passenger comfort in mind.
  • Developed a computer software tool called OVERFLOW to predict aircraft noise and aerodynamic performance. This tool is now being used by several air taxi manufacturers to test how propellers or wings perform.
  • In collaboration with Sikorsky and DARPA (Defense Advanced Research Projects Agency), flew two helicopters autonomously using NASA-designed collision avoidance software.
  • Designed and flew a camera pod with sensors to help advance computer vision for autonomous aviation.
  • Launched a new science, technology, engineering, and mathematics kit focused on Advanced Air Mobility so students can learn more about air taxis and drones.
  • Continued to reduce traffic and save fuel at major U.S. airports as part of NASA’s to work to improve air travel and make it more sustainable.
  • Worked with partners to demonstrate a first-of-its-kind air traffic management concept for aircraft to safely operate at higher altitudes.
  • Advanced Hybrid-Electric technologies with GE Aerospace under the Hybrid Thermally Efficient Core project.
  • Conducted new ground and flight tests for the Electrified Powertrain Flight Demonstration project, which works to create hybrid electric powertrains for regional and single-aisle aircraft, alongside GE Aerospace and magniX.
  • Collaborated with the Federal Aviation Administration and police and fire departments to strategize on integrating public safety drones into the national airspace.
  • Launched a new science, technology, engineering, and mathematics kit focused on Advanced Air Mobility so students can learn more about air taxis and drones.

Improving Life on Earth, in Space with Technology

NASA develops essential technologies to drive exploration and the space economy. In 2024, NASA leveraged partnerships to advance technologies and test new capabilities to help the agency develop a sustainable presence on the lunar surface and beyond, while benefiting life on our home planet and in low Earth orbit. The following are 2024 space technology advancements:

  • Deployed NASA’s Advanced Composite Solar Sail System in space, marking a successful test of its composite boom technology.
  • Performed record-breaking laser communications with NASA’s Deep Space Optical Communications technology demonstration by sending a laser signal from Earth to NASA’s Psyche spacecraft about 290 million miles away.
    • NASA’s Advanced Composite Solar Sail System and Deep Space Optical Communications were named among TIME’s Inventions of 2024, along with the agency’s Europa Clipper spacecraft.
  • Supported 84 tests of technology payloads via 38 flights with six U.S. commercial flight providers through NASA’s Flight Opportunities Program.
  • Enabled the first NASA-supported researcher to fly with their payload aboard a commercial suborbital rocket.
  • Advanced critical capabilities for autonomous networks of small spacecraft with NASA’s Starling demonstration, the first satellite swarm to autonomously distribute information and operations data between spacecraft.
  • Demonstrated space-age fuel gauge technology, known as a Radio Frequency Mass Gauge, on Intuitive Machines’ Nova-C lunar lander, to develop technology to accurately measure spacecraft fuel levels.
  • Performed an in-space tank to tank transfer of cryogenic propellent (liquid oxygen) on the third flight test of SpaceX’s Starship.
  • Licensed a new 3-D printed superalloy, dubbed GRX-810, to four American companies to make stronger, more durable airplane and spacecraft parts.
  • Manufactured 3D-printed, liquid oxygen/hydrogen thrust chamber hardware as part of NASA’s Rapid Analysis and Manufacturing Propulsion Technology project, which earned the agency’s 2024 “Invention of The Year” award for its contributions to NASA and commercial industry’s deep space exploration goals.
  • Pioneered quantum discovery using the Cold Atom Lab, including producing the first dual-species Bose-Einstein Condensates in space, the first dual-species atom interferometers in space, and demonstrating the first ultra-cool quantum sensor for the first time in space.
  • Announced two new consortia to carry out ground-based research investigations and conduct activities for NASA’s Biological and Physical Sciences Space Biology Program, totaling $5 million.
  • Awarded $4.25 million across the finales of three major NASA Centennial Challenges, including Break the Ice, Watts on the Moon, and Deep Space Food to support NASA’s Artemis missions and future journeys into deep space. 
  • Launched a collaborative process to capture the aerospace community’s most pervasive technical challenges, resulting in a ranked list of 187 civil space shortfalls to help guide future technology development projects, investments, and technology roadmaps.

Growing Global Partnerships

Through the Artemis Accords, almost 50 nations have joined the United States, led by NASA with the U.S. State Department, in a voluntary commitment to engage in the safe, transparent, and responsible exploration of the Moon, Mars, and beyond. The Artemis Accords represent a robust and diverse group of nation states, representing all regions of the world, working together for the safe, transparent, and responsible exploration of the Moon, Mars and beyond with NASA. More countries are expected to sign the Artemis Accords in the weeks and months ahead.

  • During a May workshop with Artemis Accords signatories in Montreal, Canada, NASA led a tabletop exercise for 24 countries centered on further defining and implementing key tenets, including considering views on non-interference, interoperability, and scientific data sharing among nations.
  • A NASA delegation participated in the 75th International Astronautical Congress in Milan. During the congress, NASA co-chaired the Artemis Accords Principals’ Meeting, which brought together 42 nations furthering discussions on the safe and responsible use of space for the benefit of all.

Celebrating Total Solar Eclipse

During the total solar eclipse on April 8, NASA helped the nation enjoy the event safely and engaged millions of people with in-person events, live online coverage, and citizen science opportunities. NASA also funded scientists around North America to take advantage of this unique position of the Sun, Moon, and Earth to learn more about the Sun and its connection to our home planet. Highlights of the solar celebration include:

  • The space station crew were among the millions viewing the solar eclipse.
  • NASA collaborated with the Indianapolis Motor Speedway, Google, NCAA Women’s Final Four, Peanuts Worldwide, Microsoft, Sésamo, LEGO, Barbie, Major League Baseball, Third Rock Radio, Discovery Education, and others on eclipse-inspired products and social posts to support awareness of the eclipse and the importance of safe viewing.
  • More than 50 student teams participated in NASA’s Nationwide Eclipse Ballooning Project, with some becoming the first to measure atmospheric gravity waves caused by eclipses.

Building Low Earth Orbit Economy

In August, NASA announced the development of its low Earth orbit microgravity strategy by releasing 42 objectives for stakeholder feedback. The strategy helps to guide the next generation of human presence in low Earth orbit and advance microgravity science, technology, and exploration. NASA is refining the objectives with collected input and will finalize the strategy before the end of the year. Additional advancements include:

  • NASA modified agreements for two funded commercial space station partners that are on track to develop low Earth orbit destinations for the agency and other customers.
  • A NASA-funded commercial space station, Blue Origin’s Orbital Reef, completed multiple testing milestones for its critical life support system as part of the agency’s efforts for new destinations in low Earth orbit.
  • A full-scale ultimate burst pressure test on Sierra Space’s LIFE (Large Integrated Flexible Environment) habitat structure was conducted, an element of a NASA-funded commercial space station.
  • The agency’s industry partners, through the second Collaborations for Commercial Space Capabilities initiative and Small Business Innovation Research Ignite initiative, completed safety milestones, successful flight tests, and major technological advancements.
  • As NASA opens access to space by working with private industry, the agency shared its medical expertise, human system integration knowledge, utilization requirements, and commercial space food insight to aid in developing safe, reliable, innovative, and cost-effective space stations.
  • To address a rapidly changing space operating environment and ensure its preservation for generations to come, NASA released its integrated Space Sustainability Strategy in April.
  • The agency tested the Sierra Space Dream Chaser spaceplane for the extreme environments of space at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio.
  • NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the space station and back for the first time using optical, or laser, communications.

Inspiring Artemis Generation of STEM Students

NASA continues to offer a wide range of science, technology, engineering, and mathematics (STEM) initiatives and activities, reaching and engaging the next generation of scientists, engineers, and explorers. The agency’s STEM engagements are enhanced through collaborations with partner organizations, the distribution of various grants, and additional strategic activities. Key 2024 STEM highlights include:

  • Awarded nearly $45 million to 21 higher-education institutions to help build capacity for research, and announced the recipients of grants that will support scientific and technical research projects for more than 20 universities and organizations across the United States.
  • Planted a “Moon Tree,” a seedling that traveled around the Moon and back aboard the agency’s Artemis I mission in 2022, at the U.S. Capitol in Washington. The event highlighted a partnership with the U.S. Forest Service that invited organizations across the country to host the seedlings.
  • Partnered with Microsoft’s Minecraft to engage students in a game-based learning platform, where players can experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real James Webb Space Telescope images.
  • Collaborate with the U.S. Department of Education to bring STEM to students during after-school hours under the 21st Century Community Learning Centers program, which aims to reach thousands of students in more than 60 sites across 10 states.
  • Launched NASA Engages, a platform to connect and serve the public by providing agency experts to share their experiences working on agency missions and programs.
  • With more than 55,000 applications for NASA internships across the spring, summer and fall sessions, a new recruitment record, NASA helped students and early-career professionals make real contributions to space and science missions.
  • Expanded the agency’s program to help informal educational institutions like museums, science centers, libraries, and other community organizations bring STEM content to communities, resulting in 42 active awards across 26 states and Puerto Rico.
  • Hosted the 30th Human Exploration Rover Challenge, one of NASA’s longest-standing student challenges, with participation from more than 600 students and 72 teams from around the world.

Reaching New, Future Explorers

NASA’s future-forward outreach to current and new audiences is key to providing accessibility to the agency’s scientific discoveries and to growing the future STEM workforce. NASA’s creative and inclusive 2024 strategies to reach the public include:

  • NASA’s on-demand streaming service, NASA+, achieved four times the viewership of the agency’s traditional cable channel, marking a major milestone in its ongoing web modernization efforts. As part of the digital transformation, NASA said goodbye to NASA Television, its over-the-air broadcast, streamlining how it delivers the latest space, science, and technology news. NASA+ marked its first year of operation Sept. 23, and visitors have played 1,036,389 hours of programming.
  • April 8, the day of the total solar eclipse, brought in 32 million views to NASA’s websites, more than 15 times additional views than the average this year. On average, NASA websites receive 33.4 million views every month.
  • NASA social media accounts saw an increase of 4% in followers since 2023, from 391.2 million in 2023 to 406.8 million this year. On average, NASA accounts see close to 25 million engagements each month.
    • Notable live social media events in 2024 included the first-ever Reddit Ask Me Anything with the platform’s 23-million member “Explain Like I’m Five” community; the first X Spaces conversation from space; and NASA’s first Instagram Live of a launch, which contributed 410,000 of the 6.6 million views of the Boeing Starliner Crew Flight Test launch.
    • NASA Twitch launched custom emotes, issued channel points for the first time, and collaborated with an external Twitch creator, a how-to conversation with astrophotographers and NASA experts about photographing the Moon.
  • NASA aired live broadcasts for 14 mission launches in 2024. The agency’s official broadcast of the 2024 total solar eclipse and its telescope feed are the top two most-watched livestreams this year on NASA’s YouTube.
    • The agency’s YouTube livestreams in 2024 surpassed 84.7 million total views.  
    • NASA broadcasts often were enhanced by the presence of well-known athletes, artists, and cultural figures. The solar eclipse broadcast alone featured musician Lance Bass, actor Scarlett Johannson, NFL quarterback Josh Dobbs, and Snoopy.
  • The agency’s podcasts surpassed 9.7 million all-time plays on Apple Podcasts and Spotify.
  • The NASA app was installed more than 2.1 million times in 2024.  
  • The number of subscribers to NASA’s flagship and Spanish newsletters total more than 5 million.
  • NASA celebrated the 5th anniversary of the Hidden Figures Way street renaming. The program honored the legacy of Katherine Johnson, Dorothy Vaughan, Mary Jackson, and Christine M. Darden, and others who were featured in Margot Shetterly’s book – and the subsequent movie – Hidden Figures, and their commitment to science, justice, and humanity.
  • The agency signed Space Act agreements with the National Association for the Advancement of Colored People and the Hispanic Heritage Foundation to increase engagement and equity for underrepresented students pursuing STEM fields and reduce barriers to agency activities and opportunities.
  • As part of its plans to reach new audiences, NASA continued to focus on developing Spanish-language content. This year, the agency:
    • More than doubled the number of yearly posts to its science-focused website in Spanish, Ciencia de la NASA, and grew the website’s traffic by five-fold.
    • Produced live broadcasts for the 2024 total solar eclipse and for the launch of the Europa Clipper mission, which reached a combined audience of more than 5 million viewers around the world.
    • Published a video about how NASA and ESA (European Space Agency) cooperate to train astronauts.
    • Released an astrobiology graphic novel and the agency’s economic impact yearly report in Spanish, among other outreach materials.
  • Relaunched the NASA Art Program with two space-themed murals in New York’s Hudson Square neighborhood in Manhattan. The vision of the reimagined NASA Art Program is to inspire and engage the Artemis Generation with community murals and art projects for the benefit of humanity.
  • A DC-8 Airborne Science Laboratory Workshop documented and celebrated the important scientific work conducted aboard NASA’s legendary DC-8 and captured lessons of the past for current and future operators. 
  • The Deep Space Network beamed a Missy Elliott song to space on July 12. 
  • NASA partnered with Crayola Education to develop content for Crayola’s annual Creativity Week held in January, which reached more than 6 million kids from 100 countries. 
  • On the eve of the 55th anniversary of the Apollo 11 Moon landing, NASA Johnson named one of its central buildings the “Dorothy Vaughan Center in Honor of the Women of Apollo.” Actress Octavia Spencer narrated a video for the event. 
  • NASA’s Ames Research Center in California’s Silicon Valley hosted social media creators in space, science, and engineering for a behind-the-scenes tour of the center’s world-class facilities.
  • Engaging largely untapped NASA audiences of more than 155,000 in Illinois, Michigan, and Minnesota, NASA’s Glenn launched NASA in the Midwest, an integrated approach to bring awareness to the agency’s connections to the region to large-scale festivals and surrounding community institutions.
  • Reaching 500,000 in-person attendees, NASA Stennis supported the agency’s return to the ESSENCE Festival of Culture in New Orleans.
  • NASA’s Wallops Flight Facility in Virginia developed a dance engagement program in partnership with the Eastern Shore Ballet Theatre, introducing new audiences to the agency while blending arts and science.
  • NASA participated in more than 3,700 events planned with an estimated reach of more than 17 million worldwide. This was accomplished through in-person, hybrid, and virtual outreach activities and events.
  • The agency’s Virtual Guest Program engaged 277,370 virtual guests across 13 events, with an average of 145 countries, regions, and territories represented per event.

There also were many notable engagements highlighting the intersection of space and sports in 2024, including the Stanley Cup visiting NASA Kennedy for photographs as part of the agency’s growing partnership with the National Hockey League. NASA Glenn also collaborated with The Ohio State University Marching Band for its halftime show during the university’s football game on Sept. 21. A video greeting from astronauts aboard the International Space Station introduced the show, which featured aerospace-themed music and numerous formations including the final formation the NASA Meatball.

For more about NASA’s missions, research, and discoveries, visit:

https://www.nasa.gov

-end-

Meira Bernstein / Cheryl Warner
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov

❌
❌