Normal view

Received yesterday — 5 June 2025

NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station

NASA and ISRO (Indian Space Research Organisation) are collaborating to launch scientific investigations aboard Axiom Mission 4, the fourth private astronaut mission to the International Space Station. These studies include examining muscle regeneration, growth of sprouts and edible microalgae, survival of tiny aquatic organisms, and human interaction with electronic displays in microgravity.

The mission is targeted to launch no earlier than Tuesday, June 10, aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from NASA’s Kennedy Space Center in Florida.

Regenerating muscle tissue

Dark red fibers stretch from the top to bottom of this image. Glowing blue dots are scattered along the fibers, both single dots and lines and clusters of dots.
Immunofluorescent image of human muscle fibers for Myogenesis-ISRO, showing nuclei (blue) and proteins (red).
Institute for Stem Cell Science and Regenerative Medicine, India

During long-duration spaceflights, astronauts lose muscle mass, and their muscle cells’ regenerative ability declines. Researchers suspect this may happen because microgravity interferes with metabolism in mitochondria, tiny structures within cells that produce energy. The Myogenesis-ISRO investigation uses muscle stem cell cultures to examine the muscle repair process and test chemicals known to support mitochondrial function. Results could lead to interventions that maintain muscle health during long-duration space missions, help people on Earth with age-related muscle loss and muscle-wasting diseases, and assist athletes and people recovering from surgery.

Sprouting seeds

A tangle of tannish-yellow seeds with small white sprouts fills a circular image.
This preflight image shows sprouted fenugreek seeds for the Sprouts-ISRO investigation.
Ravikumar Hosamani Lab, University of Agricultural Sciences, India

The Sprouts-ISRO investigation looks at the germination and growth in microgravity of seeds from greengram and fenugreek, nutritious plants commonly eaten on the Indian subcontinent. Bioactive compounds in fenugreek seeds also have therapeutic properties, and the leaves contain essential vitamins and minerals. Learning more about how space affects the genetics, nutritional content, and other characteristics over multiple generations of plants could inform the development of ways for future missions to reliably produce plants as a food source. 

Microalgae growth

A white square of foam holds nine rectangular clear bags filled with a pale green liquid. Each bag has two tubes protruding from it, one with a connection port and one with a clip, and there are yellow tags on one of the tubes for each bag, as well as stickers on the bags themselves.
Culture bags for Space Microalgae-ISRO.
Redwire

Space Microalgae-ISRO studies how microgravity affects microalgae growth and genetics. Highly digestible microalgae species packed with nutrients could be a food source on future space missions. These organisms also grow quickly, produce energy and oxygen, and consume carbon dioxide, traits that could be employed in life support and fuel systems on spacecraft and in certain scenarios on Earth.  

Tiny but tough

Whitson, wearing a black jacket and a smart watch on her left wrist, is looking at the microscope in front of her. The device, mounted on a silver plate connected to a station wall, has a white base with a black eyepiece in front and behind it, a flat black plate on a white arm and a black lens mounted above it. There are two black dials on the side of the base facing the camera.
NASA astronaut Peggy Whitson sets up the BioServe microscope, which will be used by the Voyager Tardigrade-ISRO investigation.
NASA

Tardigrades are tiny aquatic organisms that can tolerate extreme conditions on Earth. Voyager Tardigrade-ISRO tests the survival of a strain of tardigrades in the harsh conditions of space, including cosmic radiation and ultra-low temperatures, which kill most life forms. Researchers plan to revive dormant tardigrades, count the number of eggs laid and hatched during the mission, and compare the gene expression patterns of populations in space and on the ground. Results could help identify what makes these organisms able to survive extreme conditions and support development of technology to protect astronauts on future missions and those in harsh environments on Earth. 

Improving electronic interactions

O’Hara, wearing a long-sleeved black shirt and green pants, is holding an electronic tablet in front of her face with both hands. She is looking at the tablet. An open hatch behind her is filled with white storage containers.
NASA astronaut Loral O’Hara interacts with a touchscreen. Voyager Displays-ISRO examines how spaceflight affects use of such devices.
NASA

Research shows that humans interact with touchscreen devices differently in space. Voyager Displays – ISRO examines how spaceflight affects interactions with electronic displays such as pointing tasks, gaze fixation, and rapid eye movements along with how these interactions affect the user’s feelings of stress or wellbeing. Results could support improved design of control devices for spacecraft and habitats on future space missions as well as for aviation and other uses on Earth.

Download high-resolution photos and videos of the research mentioned in this article.

Spacewalk Research and Technology

4 Min Read

Spacewalk Research and Technology

NASA astronaut Anne McClain prepares spacesuits ahead of the May 2025 spacewalk.
Credits: NASA

Science in Space: May

Crew members on the International Space Station periodically conduct spacewalks to perform a variety of tasks such as installing, upgrading, and repairing equipment. During a spacewalk on May 1, astronauts installed hardware to support the planned addition of a seventh roll-out solar array on the exterior of the space station. Each of these arrays produces more than 20 kilowatts of electricity and together they will increased power production by up to 30%, enabling more scientific operations on the orbiting lab.

Wilmore is in the center of the image, wearing a white spacesuit, helmet, boots, and gloves. He is facing downward toward a silver, cylindrical module of the space station and holding onto a brass-colored railing on it with both hands. Behind him is a long white robotic arm with the word CANADA in large letters. To his right, part of one of the station’s solar arrays is visible.
NASA astronaut Butch Wilmore collects samples from the exterior of the space station for ISS External Microorganisms.
NASA

Some spacewalks include operations for scientific research. On January 20, 2025, crew members collected samples for ISS External Microorganisms, an investigation examining whether microorganisms have exited through station vents and can survive in space. Results could help determine changes needed in design of spacecraft (including spacesuits) to prevent human-associated microbes from contaminating Mars and other exploration destinations.

Radiation monitoring

Williams is in a white spacesuit with a Canadian flag on his left arm and various tools connected to straps on the front of the suit. He is holding on to a gold-colored railing attached to the space station with his right hand and reaching for a tool with his left. Behind him is the blackness of space.
CSA astronaut Dave Williams on a spacewalk in 2007. CSA studied the radiation dose crew members experience while outside the station.
NASA

The CSA (Canadian Space Agency) investigation EVA Radiation Monitoring, used a miniature, power-efficient wireless radiation measurement system or dosimeter worn by crew members during spacewalks. This type of device could help identify parts of the body that are exposed to the highest radiation levels during spacewalks. Results showed that this type of device is a feasible way to monitor individual dose during spacewalks. The device also has potential uses on Earth, such as monitoring radiation exposure during cancer treatments.

Spacesuit technology

Spacesuits are essentially one-person spacecraft that protect their wearers from the hazards of space, including radiation and extreme temperatures. Space station research is helping improve the suits and tools for spacewalks and activities outside spacecraft and for the exploration of the Moon and Mars.

SpaceSkin on ExHAM, a JAXA (Japan Aerospace Exploration Agency) investigation, evaluated the durability of a fabric with imbedded sensors to detect damage. Sensors integrated into the exposed outermost layer of a spacesuit could detect damage such as impacts from micrometeoroids. Researchers documented factors to consider in design of textiles with sensing capabilities as well as the ability to withstand the hazards of space. Such fabrics could be integrated into spacesuits and habitats to help protect astronauts on spacewalks and future exploration missions.

This image is taken from above Forrester, who is wearing a white spacesuit and gloves and a helmet with a gold visor. He is facing to the left of the image, looking at a large rectangular panel and holding a gold handle on its top with his right hand. On the side of the panel are multiple sample slots, including four square ones in its upper left corner that are blue and three shades of orange and three sections of circular slots that are black or white in color. The panel is mounted on a metal rod extending from the exterior of the space station.
NASA astronaut Patrick G. Forrester works with the MISSE facility.
NASA

Researchers use the Materials International Space Station Experiment or MISSE facility on the exterior of the space station for experiments exposing various materials and components to the harsh environment of space. Along with solar cells, electronics, and coatings, MISSE-7 tested pristine fibers from Apollo mission spacesuits and others scratched by lunar dust to examine the combined effects of abrasion and radiation damage. Researchers report that the fabrics significantly degraded, suggesting the need for ways to prevent or mitigate radiation damage to spacesuits on extended missions to the Moon.

MISSE-9 tested spacesuit materials treated with shear-thickening fluids. These suspensions of tiny particles in a fluid react to stress by quickly changing from a liquid to a solid. The research showed that the materials maintained their mechanical performance characteristics and puncture resistance after extended exposure.

Keeping cool also is important on a spacewalk, where temperatures can reach 250 degrees. SERFE, or Spacesuit Evaporation Rejection Flight Experiment, tested a technology using water evaporation to remove heat from a spacesuit so crew members and equipment remain at appropriate temperatures during spacewalks. A current cooling method, called sublimation, exposes small amounts of water to space, causing it to freeze and then turn into vapor that disperses, removing heat as it does so. The SERFE technology may be less susceptible to water contamination than sublimation.

Exiting station

The large white robotic arm extends from the upper left of the image, with two joints near its end, which is connected to a large, drum-shaped silver dome. In the background is blue sea on an Earth covered with thin white clouds.
The Nanoracks Bishop Airlock is attached to the Canadarm2 robotic arm as the International Space Station orbits 264 miles above the Atlantic Ocean off the coast of Brazil. Ocean off the coast of southern Brazil at the time of this photograph.
NASA

Crew members use specialized airlocks to exit the station for spacewalks. Airlocks also make it possible to deploy satellites and other external equipment. The Nanoracks Bishop Airlock was the first commercially owned and operated airlock installed on the space station. Its size, design, and automation enable faster and more efficient movement of materials out of and into the station, reducing the crew and robotics time needed. In addition to facilitating spacewalks, this facility could support increased commercial use of the space station and expand research capabilities.

💾

Imagine you are an Astronaut on the Moon. Your job for the next eight hours will be exploring, collecting science samples, traversing up and down lunar hills...
Received before yesterday

Heart Health

13 February 2025 at 09:00
4 Min Read

Heart Health

iss062e115369 (March 26, 2020) --- NASA astronaut and Expedition 62 Flight Engineer Jessica Meir conducts cardiac research in the Life Sciences Glovebox located in the Japanese Kibo laboratory module. The Engineered Heart Tissues investigation could promote a better understanding of cardiac function in microgravity which would be useful for drug development and other applications related to heart conditions on Earth.
Jessica Meir conducts cardiac research in the space station’s Life Sciences Glovebox.
Credits: NASA

Science in Space: February 2025

February was first proclaimed as American Heart Month in 1964. Since then, its 28 (or 29) days have served as an opportunity to encourage people to focus on their cardiovascular health.

The International Space Station serves as a platform for a variety of ongoing research on human health, including how different body systems adapt to weightlessness. This research includes assessing cardiovascular health in astronauts during and after spaceflight and other studies using models of the cardiovascular system, such as tissue cultures. The goal of this work is to help promote heart health for humans in space and everyone on Earth. For this Heart Month, here is a look at some of this spaceflight research

Building a better heart model

An astronaut wearing white latex gloves holds a syringe in each hand. The syringes are attached to a container about the size of a tissue box that holds cell cultures. The top of the container is green with multiple silver ports and a BioServe logo.
Media exchange in the tissue chambers for the Engineered Heart Tissue investigation.
NASA

Microgravity exposure is known to cause changes in cardiovascular function. Engineered Heart Tissues assessed these changes using 3D cultured cardiac tissues that model the behavior of actual heart tissues better than traditional cell cultures. When exposed to weightlessness, these “heart-on-a-chip” cells behaved in a manner similar to aging on Earth. This finding suggests that these engineered tissues can be used to investigate the effects of space radiation and long-duration spaceflight on cardiac function. Engineered tissues also could support development of measures to help protect crew members during a mission to Mars. Advanced 3D culture methodology may inform development of strategies to prevent and treat cardiac diseases on Earth as well.

Private astronaut heart health

All 11 crew members are facing the camera and smiling. Artemyev is wearing a black polo shirt, Mateev a long-sleeved blue and white shirt and Korsakov a blue polo shirt. The rest of the crew members are wearing black or dark blue polo shirts. The three astronauts in the back row are upside down in relation to the others.
In April 2022, the 11-person station crew included (clockwise on the outside from bottom right) NASA astronaut Tom Marshburn; Roscosmos cosmonauts Oleg Artemyev, Denis Matveev, and Sergey Korsakov; NASA astronauts Raja Chari, Kayla Barron, and Matthias Maurer; and Ax-1 astronauts (center row from left) Mark Pathy, Eytan Stibbe, Larry Conner, and Michael López-Alegría.
NASA

For decades, human research in space has focused on professional and government-agency astronauts, but commercial spaceflight opportunities now allow more people to participate in microgravity research. Cardioprotection Ax-1 analyzed cardiovascular and general health in private astronauts on the 17-day Axiom-1 mission.

The study found that 14 health biomarkers related to cardiac, liver, and kidney health remained within normal ranges during the mission, suggesting that spaceflight did not significantly affect the health of the astronaut subjects. This study paves the way for monitoring and studying the effects of spaceflight on private astronauts and developing health management plans for commercial space providers.

Better measurements for better health

Peake, in a blue t-shirt and black shorts, is using his right hand to pull on a purple resistance band around his right foot. He is holding a small blue microphone in his left hand. Several laptops and multiple cords, wiring, and hardware are visible behind him.
ESA astronaut Tim Peake conducts operations for the Vascular Echo experiment.
NASA

Vascular Echo, an investigation from CSA (Canadian Space Agency), examined blood vessels and the heart using a variety of tools, including ultrasound. A published study suggests that 3D imaging technology might better measure cardiac and vascular anatomy than the 2D system routinely used on the space station. The research team also developed a probe for the ultrasound device that better directs the beam, making it possible for someone who is not an expert in sonography to take precise measurements. This technology could help astronauts monitor heart health and treat cardiovascular issues on a long-duration mission to the Moon or Mars. The technology also could help patients on Earth who live in remote locations, where an ultrasound operator may not always be available.

Long-term heart health in space

As part of exploring ways to keep astronauts healthy on missions to the Moon and Mars, NASA is conducting a suite of space station studies called CIPHER that looks at the effects of spaceflight lasting up to a year. One CIPHER study, Vascular Calcium, examines whether calcium lost from bone during spaceflight might deposit in the arteries, increasing vessel stiffness and contributing to increased risk of future cardiovascular disease. Astronaut volunteers provide blood and urine samples and undergo ultrasound and high-resolution scans of their bones and arteries for this investigation. Another CIPHER study, Coronary Responses, uses advanced imaging tests to measure heart and artery response to spaceflight.

These studies will help scientists determine whether spaceflight accelerates narrowing and stiffening of the arteries, known as atherosclerosis, or increases the risk of atrial fibrillation, a rapid and irregular heartbeat seen in middle-aged adults. This work also could help identify potential biomarkers and early warning indicators of cardiovascular disease.

Melissa Gaskill

International Space Station Research Communications Team

Johnson Space Center

Peak Performance in Microgravity

Science in Space January 2025

At the start of a new year, many people think about making positive changes in their lives, such as improving physical fitness or learning a particular skill. Astronauts on the International Space Station work all year to maintain a high level of performance while adapting to changes in their physical fitness, cognitive ability, sensory perception, and other functions during spaceflight.

Research on the space station looks at how these qualities change in space, the ways those changes affect daily performance, and countermeasures to keep astronauts at their peak.

Saint-Jacques wears a black sleeveless shirt and a black headband, both with a round blue CSA logo patch, and two watches on his left wrist. With both hands, he is holding a device the size of a large shoebox, with silver edges around black devices connected with several cords.
CSA astronaut David Saint-Jacques wears the Bio-Monitor health sensor shirt and headband.
NASA

A current CSA (Canadian Space Agency) investigation, Space Health, assesses the effects of spaceflight on cardiovascular deconditioning. The investigation uses Bio-Monitor, wearable sensors that collect data such as pulse rate, blood pressure, breathing rate, skin temperature, and physical activity levels. Results could support development of an autonomous system to monitor cardiovascular health on future space missions. Similar technology could be used to monitor heart health in people on Earth.

Maintaining muscle fitness

Gerst, wearing black shorts, lies on his back while Auñón-Chancellor holds a small white ultrasound device over his right upper arm. Auñón-Chancellor is wearing a pink shirt, black pants, and white socks. Her head is turned toward the screen of the ultrasound.
NASA astronaut Serena Auñón-Chancellor tests ESA astronaut Alexander Gerst’s muscle tone.
ESA

During spaceflight, astronauts lose muscle mass and stiffness, an indication of strength. Astronauts exercise daily to counteract these effects, but monitoring the effectiveness of exercise had been limited to before and after flight due to the lack of technologies appropriate for use in space. The ESA (European Space Agency) Myotones investigation demonstrated that a small, non-invasive device accurately measured muscle stiffness and showed that current countermeasures seem to be effective for most muscle groups. Accurate inflight assessment could help scientists target certain muscles to optimize the effectiveness of exercise programs on future missions. The measuring device also could benefit patients in places on Earth without other means for monitoring.

Keeping a sharp mind

Research suggests that the effects of spaceflight on cognitive performance likely are due to the influence of stressors such as radiation and sleep disruption. Longer missions that increase the exposure to these hazards may change how they affect individuals.

Dean, wearing a green shirt and a headset, is seated inside the cockpit-shaped black simulator, with his back toward the camera. Images of the surface of Mars are projected on screens in front of him.
Test subject Lance Dean performs a manual control task in the Johnson Space Center Neurosciences Laboratory’s Motion Simulator.
NASA

Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function right after landing. The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and ability to multitask in simulated flying and driving challenges. Researchers attribute this to subtle physiological changes during spaceflight. Performance recovered once individuals were exposed to a task, suggesting that having crew members conduct simulated tasks right before actual ones could be beneficial. This work helps scientists ensure that crew members can safely land and conduct early operations on the Moon and Mars.

Standard Measures collects a set of physical and mental measurements related to human spaceflight risks, including a cognition test battery, from astronauts before, during, and after missions. Using these data, researchers found that astronauts on 6-month missions demonstrated generally stable cognitive performance with mild changes in certain areas, including processing speed, working memory, attention, and willingness to take risks. The finding provides baseline data that could help identify cognitive changes on future missions and support development of appropriate countermeasures. This research includes the largest sample of professional astronauts published to date.

Evaluating perception

Saint-Jacques is wearing a blue polo shirt with a CSA logo, khaki pants, and black socks. He is suspended upside down by four white straps connected to a harness around his middle and has a virtual reality headset on his head and a small black controller in his right hand. An open laptop floats next to him.
CSA astronaut David Saint-Jacques conducts a session for VECTION.
NASA

Another function that can be affected by spaceflight is sensory perception, such as the ability to interpret motion, orientation, and distance. We use our visual perception of the height and width of objects around us, for example, to complete tasks such as reaching for an object and deciding whether we can fit through an opening. VECTION, a CSA investigation, found that microgravity had no immediate effect on the ability to perceive the height of an object, indicating that astronauts can safely perform tasks that rely on this judgment soon after they arrive in space. Researchers concluded there is no need for countermeasures but did suggest that space travelers be made aware of late-emerging and potentially long-lasting changes in the ability to perceive object height.

Melissa Gaskill

International Space Station Research Communications Team

Johnson Space Center

NASA’s 2024 International Space Station Achievements

Streaks of white light cover a blue Earth, and a green and red aurora rises from the horizon. The exterior of the space station is visible in the top third of the image.
City lights streak across Earth and an aurora is visible on the horizon as the International Space Station passes over Lake Michigan.
NASA

For more than 24 years, NASA has supported a continuous U.S. human presence aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth for the benefit of humanity. The space station is a springboard to NASA’s next great leaps in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.

Read more about the groundbreaking work conducted in 2024 aboard the station:

Robot performs remote simulated surgery

On long-duration missions, crew members may need surgical procedures, whether simple stitches or an emergency appendectomy. A small robot successfully performed simulated surgical procedures on the space station in early February 2024 for the Robotic Surgery Tech Demo, using two “hands” to grasp and cut rubber bands simulating tissue. Researchers compare the procedures conducted aboard the station and on Earth to evaluate the effects of microgravity and communication delays between space and ground.

O’Hara is wearing a gray hooded sweatshirt and smiling at the camera, as she holds the miniature robot with both hands. The robot is narrow, about the size of an adult’s forearm, with a gray handle that has up and down arrow buttons and two bent “arms” on its end. One of the arms has a metal spatula and the other a set of clippers.
NASA astronaut Loral O’Hara holds the Robotic Surgery Tech Demo hardware on the International Space Station.
NASA

3D metal print in space

On May 30,2024, the ESA (European Space Agency) Metal 3D Printer investigation created a small stainless steel s-curve, the first metal 3D print in space. Crew members on future missions could print metal parts for equipment maintenance, eliminating the need to pack spare parts and tools at launch. This technology also has the potential to improve additive manufacturing on Earth.

Epps is wearing a long-sleeved black top and pants, a black headband, goggles, and blue latex gloves and has a tablet attached by Velcro to her pants. In her right hand she holds a small disk with six 3D printed posts of different shapes and lengths protruding from it.
NASA astronaut Jeanette Epps prints samples for Metal 3D Printer on the International Space Station.
NASA

Here’s looking at you, Earth

The space station orbits roughly 250 miles above and passes over 90 percent of Earth’s population, providing a unique perspective for photographing the planet. Astronauts have taken more than 5.3 million images of Earth to monitor the planet’s changing landscape. The Expedition 71 crew took over 630,000 images, well above the average of roughly 105,000 for a single mission. This year, images included the April solar eclipse and auroras produced as the Sun’s 11-year activity cycle peaks. Others supported response to over 14 disaster events including hurricanes. In addition, 80,000 images were geolocated using machine learning, improving public search capabilities.

Milton is a large white spiral and a long cloud trail extending across this image. A portion of the space station is visible in the upper left corner, with blue ocean on Earth in the upper right.
This astronaut photo from the International Space Station shows Hurricane Milton, a category 4 storm in the Gulf of Mexico, nearing the coast of Florida in October.
NASA

Miles of flawless fibers

From mid-February to mid-March of 2024, the Flawless Space Fibers-1 system produced more than seven miles of optical fiber in space. One draw of more than a half mile of fiber surpassed the prior record of 82 feet for the longest fiber manufactured in space, demonstrating that commercial lengths of fiber can be produced in orbit. Fibers produced in microgravity can be superior to those produced in Earth’s gravity. These fibers are made from ZBLAN, a glass alloy with the potential to provide more than 10 times the transmission capacity of traditional silica-based fibers.

O’Hara, wearing a dark blue sleeveless t-shirt, smiles at the camera. Her right hand is touching the front of a large silver box built into a wall, with lights above it and a clear panel that reveals part of a circular sample holder that resembles an old film reel. There is a panel of switches below her hand and several large cameras on the wall behind her.
NASA astronaut Loral O’Hara conducting Flawless Space Fibers operations in the Microgravity Science Glovebox inside the International Space Station.
NASA

Tell-tale heart

In May 2024, BFF-Cardiac successfully bioprinted a three-dimensional human heart tissue sample using the Redwire BioFabrication Facility. Tissues bioprinted in the microgravity of the space station hold their shape without the use of artificial scaffolds. These bioprinted human heart tissues eventually could be used to create personalized patches for tissue damaged by events such as heart attacks. The tissue sample is undergoing further testing on Earth.

On the left, Dominick, wearing a black short-sleeved polo shirt and a headlamp, smiles at the camera. His arms are in the plastic sleeves of a portable glovebag the size of a large suitcase. On the right, a cylindrical glass flask holds a red liquid. In the bottom of the flask is a palm-sized white cellular structure under a spotlight.
At left, NASA astronaut Matthew Dominick works on the BFF-Cardiac investigation aboard the International Space Station. At right, cardiac tissue is 3D bioprinted for the investigation.
NASA

Station-tested radiation technology flown on Artemis I

The Orion spacecraft carried 5,600 passive and 34 active radiation detectors on its Artemis I uncrewed mission around the Moon in November 2022. Some of these devices previously were tested on the space station: HERA (Hybrid Electronic Radiation Assessor), which detects radiation events such as solar flares; the ESA (European Space Agency) Active Dosimeters, a wearable device collecting real-time data on individual radiation doses; and the AstroRad Vest, a garment to protect radiation-sensitive organs and tissues. In 2024, researchers released evaluation of data collected in 2022 by these tools that indicate the Orion spacecraft can protect astronauts on lunar missions from potentially hazardous radiation. The orbiting laboratory remains a valuable platform for testing technology for missions beyond Earth’s orbit.

The vest, closed by two buckle straps, is dark blue with a gray stripe from the bottom up to the shoulder, and small patches of the American and Israeli flags and StemRad and Lockheed Martin logos. The seven windows of the cupola are visible behind it and, through them, Earth below.
The AstroRad Vest, a radiation protection garment, floats in the International Space Station’s cupola.
NASA

Record participation in Fifth Robo-Pro Challenge

A record 661 teams and 2,788 applicants from thirteen countries, regions, and organizations participated in the fifth Kibo Robo-Pro Challenge, which wrapped its final round in September. This educational program from JAXA (Japan Aerospace Exploration Agency) has students solve various problems by programming free-flying Astrobee robots aboard the space station. Participants gain hands-on experience with space robot technology and software programming and interact with others from around the world.

The carry-on suitcase-sized, cube-shaped robot, with blue and black sides and a white middle, moves up and across the image from right to left. Behind it is a round white station hatch and, to either side of it, walls covered with cords, equipment, and rolls of tape.
An Astrobee robot moves through the space station for the Robo-Pro Challenge.
NASA

Melissa Gaskill
International Space Station Research Communications Team|
Johnson Space Center

❌