Normal view

Received yesterday — 5 June 2025

NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Boeing’s test plane simulates digital taxiing at Moffett Field at NASA’s Ames Research Center in California’s Silicon Valley.
NASA/Brandon Torres Navarrete

New technology tested by an industry partner at NASA’s Ames Research Center in California’s Silicon Valley could improve how commercial planes taxi to and from gates to runways, making operations safer and more efficient on the surfaces of airports.

Airport taxiways are busy. Planes come and go while support vehicles provide maintenance, carry fuel, transport luggage, and more. Pilots must listen carefully to air traffic control when getting directions to the runway – and garbled communications and heavy workloads can cause issues that could lead to runway incursions or collisions.

Researchers at Boeing are working to address these issues by digitizing taxiway information and automating aircraft taxi functions. The team traveled to NASA Ames to collaborate with researchers while testing their technology at the Moffett Federal Airfield and NASA’s FutureFlight Central, an air traffic control simulation facility.

Doug Christensen, test engineer for Air Traffic Management eXploration (ATM-X) at NASA Ames, and Mike Klein, autonomy technical leader in product development at Boeing discuss the digital taxi test in Ames’s FutureFlight Central facility.
NASA/Brandon Torres Navarrete

To test these new technologies, Boeing brought a custom single-engine test plane to the airfield. Working from FutureFlight Central, their researchers developed simulated taxiway instructions and deployed them to the test pilot’s digital tablet and the autonomous system.

Typically, taxiing requires verbal communication between an air traffic controller and a pilot. Boeing’s digital taxi release system displays visual turn-by-turn routes and directions directly on the pilot’s digital tablet.

“This project with Boeing lends credibility to the research being done across Ames,” said Adam Yingling, autonomy researcher for the Air Traffic Management-eXploration (ATM-X) program at NASA Ames. “We have a unique capability with our proximity to Moffett and the work Ames researchers are doing to advance air traffic capabilities and technologies to support the future of our national airspace that opens the door to work alongside commercial operators like Boeing.”

The team’s autonomous taxiing tests allowed its aircraft to follow the air traffic control’s digital instructions to transit to the runway without additional pilot inputs.

Estela Buchmann, David Shapiro, and Maxim Mounier, members of the NASA Ames ATM-X project team, analyze results of Boeing’s digital taxi test at Ames’s FutureFlight Central facility.
NASA/Brandon Torres Navarrete

As commercial air travel increases and airspace gets busier, pilots and air traffic controllers have to manage heavier workloads. NASA is working with commercial partners to address those challenges through initiatives like its Air Traffic Management-eXploration project, which aims to transform air traffic management to accommodate new vehicles and air transportation options.

“In order to increase the safety and efficiency of our airspace operations, NASA research in collaboration with industry can demonstrate how specific functions can be automated to chart the course for enhancing traffic management on the airport surface,” said Shivanjli Sharma, ATM-X project manager at Ames. 

Keep Exploring

Discover More Topics From NASA

NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft

17 April 2025 at 16:00

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A yellow traffic cone and a black tripod with black testing instruments stands in the foreground on a concrete pad with a desert landscape, power lines, and a black and white aircraft in the background. The aircraft has six black propellors that sit on white arms and connect to the aircraft body, which has black doors and is pod-shaped. The aircraft sits on three small wheels.
One of several NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation sits in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.
NASA/Genaro Vavuris

NASA engineers began using a network of ground sensors in March to collect data from an experimental air taxi to evaluate how to safely integrate such vehicles into airspace above cities – in all kinds of weather.

Researchers will use the campaign to help improve tools to assist with collision avoidance and landing operations and ensure safe and efficient air taxi operations in various weather conditions.

For years, NASA has looked at how wind shaped by terrain, including buildings in urban areas, can affect new types of aircraft. The latest test, which is gathering data from a Joby Aviation demonstrator aircraft, looks at another kind of wind – that which is generated by the aircraft themselves.

Joby flew its air taxi demonstrator over NASA’s ground sensor array near the agency’s Armstrong Flight Research Center in Edwards, California producing air flow data. The Joby aircraft has six rotors that allow for vertical takeoffs and landings, and tilt to provide lift in flight. Researchers focused on the air pushed by the propellers, which rolls into turbulent, circular patterns of wind.

Five orange traffic cones and barriers sit in front of a large white box in the foreground. In the background, a man wearing jeans and a black sweatshirt stands in front of a black laptop. Behind him, there are several cream-colored trailers, other construction equipment, and a few cars.
NASA aeronautical meteorologist Luke Bard adjusts one of several wind lidar (light detection and ranging) sensors near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025, in preparation to collect data from Joby Aviation’s experimental air taxi aircraft. NASA is collecting information during this study to help advance weather-tolerant air taxi operations for the entire industry
NASA/Genaro Vavuris

This rolling wind can affect the aircraft’s performance, especially when it’s close to the ground, as well as others flying in the vicinity and people on the ground. Such wind turbulence is difficult to measure, so NASA enhanced its sensors with a new type of lidar – a system that uses lasers to measure precise distances – and that can map out the shapes of wind features.

“The design of this new type of aircraft, paired with the NASA lidar technology during this study, warrants a better understanding of possible wind and turbulence effects that can influence safe and efficient flights,” said Grady Koch, lead for this research effort, from NASA’s Langley Research Center in Hampton, Virginia.

Data to Improve Aircraft Tracking

NASA also set up a second array of ground nodes including radar, cameras, and microphones in the same location as the sensors to provide additional data on the aircraft. These nodes will collect tracking data during routine flights for several months.

The agency will use the data gathered from these ground nodes to demonstrate the tracking capabilities and functions of its “distributed sensing” technology, which involves embedding multiple sensors in an area where aircraft are operating.

The top of a black tripod with black testing instruments stands in the foreground on a concrete pad with a desert landscape and power lines in the background. A black and white aircraft is in the sky above in the background with blue sky and clouds behind as the aircraft hovers. The aircraft has six black propellors that sit on white arms and connect to the aircraft body, which has black doors and is pod-shaped. The aircraft sits on three small wheels.
One of multiple NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation hovers in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.
NASA/Genaro Vavuris

This technology will be important for future air taxi flights, especially those occurring in cities by tracking aircraft moving through traffic corridors and around landing zones. Distributed sensing has the potential to enhance collision avoidance systems, air traffic management, ground-based landing sensors, and more.

“Our early work on a distributed network of sensors, and through this study, gives us the opportunity to test new technologies that can someday assist in airspace monitoring and collision avoidance above cities,” said George Gorospe, lead for this effort from NASA’s Ames Research Center in California’s Silicon Valley.

Using this data from an experimental air taxi aircraft, NASA will further develop the technology needed to help create safer air taxi flights in high-traffic areas. Both of these efforts will benefit the companies working to bring air taxis and drones safely into the airspace.

The work is led by NASA’s Transformational Tools and Technologies and Convergent Aeronautics Solutions projects under the Transformative Aeronautics Concepts program in support of NASA’s Advanced Air Mobility mission. NASA’s Advanced Air Mobility mission seeks to deliver data to guide the industry’s development of electric air taxis and drones.

❌