Normal view

Received before yesterday

Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Group photo of the South Dakota State University team wearing blue NASA t-shirts standing in front of two Bannerstands after winning 2025 Gateways to Blue Skies.
A team from South Dakota State University with their project, “Soil Testing and Plant Leaf Extraction Drone,” took first place at the 2025 Gateways to Blue Skies Forum held May 20-21 in Palmdale, California. Advisor Todd Lechter, left, along with team members Nick Wolles, Keegan Visher, Nathan Kuehl and Laura Peterson, and graduate advisor Allea Klauenberg, right, accepted the award.
NASA

A team from South Dakota State University, with their project titled “Soil Testing and Plant Leaf Extraction Drone” took first place at the 2025 NASA Gateways to Blue Skies Competition, which challenged student teams to research aviation solutions to support U.S. agriculture.

The winning project proposed a drone-based soil and tissue sampling process that would automate a typically labor-intensive farming task. The South Dakota State team competed among eight finalists at the 2025 Blue Skies Forum May 20-21 in Palmdale, California, near NASA’s Armstrong Flight Research Center. Subject matter experts from NASA and industry served as judges.

“This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms,” said Steven Holz, assistant project manager for University Innovation with NASA’s Aeronautics Research Mission Directorate and Blue Skies judge and co-chair. “They bring imaginative ideas, interesting insights, and an impressive level of dedication. It’s always an honor to work with the next generation of innovators participating in our competition.”

This competition challenges students to think creatively, explore new possibilities, and confront the emerging issues and opportunity spaces solvable through aviation platforms

Steven holz

Steven holz

Assistant Project Manager for University Innovation

The winning team members were awarded an opportunity to intern during the 2025-26 academic year at any of four aeronautics-focused NASA centers — Langley Research Center in Hampton, Virginia, Glenn Research Center in Cleveland, Ames Research Center in California’s Silicon Valley, or Armstrong Flight Research Center in Edwards, California.  

“It’s been super-rewarding for our team to see how far we’ve come, especially with all these other amazing projects that we were competing against,” said Nathan Kuehl, team lead at South Dakota State University. “It wouldn’t have been possible without our graduate advisor, Allea Klauenberg, and advisor, Todd Lechter. We want to thank everybody that made this experience possible.”

Other awards included: 

  • Second Place — University of Tulsa, CattleLog Cattle Management System
  • Best Technical Paper — Boston University, PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment

Sponsored by NASA’s Aeronautics Research Mission Directorate, this year’s competition asked teams of university students to research new or improved aviation solutions to support agriculture that could be applied by 2035 or sooner. The goal of the competition, titled AgAir: Aviation Solutions for Agriculture, was to enhance production, efficiency, sustainability, and resilience to extreme weather. 

At the forum, finalist teams presented concepts of aviation systems that could help the agriculture industry.Students had the opportunity to meet with NASA and industry experts, tour NASA Armstrong, and gain insight into the agency’s aviation mission.

U.S. agriculture provides food, fuel, and fiber to the nation and the world. However, the industry faces significant challenges. NASA Aeronautics is committed to supporting commercial, industrial, and governmental partners in advancing aviation systems to modernize agricultural capabilities.  

The Gateways to Blue Skies competition is sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project and is managed by the National Institute of Aerospace.

The National Institute of Aerospace has made available a livestream of the competition, as well as information about the finalists and their projects, and details about the 2025 competition.

Facebook logo
Instagram logo
Linkedin logo

NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft

17 April 2025 at 16:00

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A yellow traffic cone and a black tripod with black testing instruments stands in the foreground on a concrete pad with a desert landscape, power lines, and a black and white aircraft in the background. The aircraft has six black propellors that sit on white arms and connect to the aircraft body, which has black doors and is pod-shaped. The aircraft sits on three small wheels.
One of several NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation sits in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.
NASA/Genaro Vavuris

NASA engineers began using a network of ground sensors in March to collect data from an experimental air taxi to evaluate how to safely integrate such vehicles into airspace above cities – in all kinds of weather.

Researchers will use the campaign to help improve tools to assist with collision avoidance and landing operations and ensure safe and efficient air taxi operations in various weather conditions.

For years, NASA has looked at how wind shaped by terrain, including buildings in urban areas, can affect new types of aircraft. The latest test, which is gathering data from a Joby Aviation demonstrator aircraft, looks at another kind of wind – that which is generated by the aircraft themselves.

Joby flew its air taxi demonstrator over NASA’s ground sensor array near the agency’s Armstrong Flight Research Center in Edwards, California producing air flow data. The Joby aircraft has six rotors that allow for vertical takeoffs and landings, and tilt to provide lift in flight. Researchers focused on the air pushed by the propellers, which rolls into turbulent, circular patterns of wind.

Five orange traffic cones and barriers sit in front of a large white box in the foreground. In the background, a man wearing jeans and a black sweatshirt stands in front of a black laptop. Behind him, there are several cream-colored trailers, other construction equipment, and a few cars.
NASA aeronautical meteorologist Luke Bard adjusts one of several wind lidar (light detection and ranging) sensors near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025, in preparation to collect data from Joby Aviation’s experimental air taxi aircraft. NASA is collecting information during this study to help advance weather-tolerant air taxi operations for the entire industry
NASA/Genaro Vavuris

This rolling wind can affect the aircraft’s performance, especially when it’s close to the ground, as well as others flying in the vicinity and people on the ground. Such wind turbulence is difficult to measure, so NASA enhanced its sensors with a new type of lidar – a system that uses lasers to measure precise distances – and that can map out the shapes of wind features.

“The design of this new type of aircraft, paired with the NASA lidar technology during this study, warrants a better understanding of possible wind and turbulence effects that can influence safe and efficient flights,” said Grady Koch, lead for this research effort, from NASA’s Langley Research Center in Hampton, Virginia.

Data to Improve Aircraft Tracking

NASA also set up a second array of ground nodes including radar, cameras, and microphones in the same location as the sensors to provide additional data on the aircraft. These nodes will collect tracking data during routine flights for several months.

The agency will use the data gathered from these ground nodes to demonstrate the tracking capabilities and functions of its “distributed sensing” technology, which involves embedding multiple sensors in an area where aircraft are operating.

The top of a black tripod with black testing instruments stands in the foreground on a concrete pad with a desert landscape and power lines in the background. A black and white aircraft is in the sky above in the background with blue sky and clouds behind as the aircraft hovers. The aircraft has six black propellors that sit on white arms and connect to the aircraft body, which has black doors and is pod-shaped. The aircraft sits on three small wheels.
One of multiple NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation hovers in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.
NASA/Genaro Vavuris

This technology will be important for future air taxi flights, especially those occurring in cities by tracking aircraft moving through traffic corridors and around landing zones. Distributed sensing has the potential to enhance collision avoidance systems, air traffic management, ground-based landing sensors, and more.

“Our early work on a distributed network of sensors, and through this study, gives us the opportunity to test new technologies that can someday assist in airspace monitoring and collision avoidance above cities,” said George Gorospe, lead for this effort from NASA’s Ames Research Center in California’s Silicon Valley.

Using this data from an experimental air taxi aircraft, NASA will further develop the technology needed to help create safer air taxi flights in high-traffic areas. Both of these efforts will benefit the companies working to bring air taxis and drones safely into the airspace.

The work is led by NASA’s Transformational Tools and Technologies and Convergent Aeronautics Solutions projects under the Transformative Aeronautics Concepts program in support of NASA’s Advanced Air Mobility mission. NASA’s Advanced Air Mobility mission seeks to deliver data to guide the industry’s development of electric air taxis and drones.

NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping

11 February 2025 at 08:54

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist illustration of the Aircraft Harmony, one of the GoAEROs prize competition winners..
Artist’s concept of an emergency response flyer from a team at Texas A&M University and Oklahoma State University, one of 14 university teams that received NASA-supported GoAERO awards in 2025.
Texas A&M University and Oklahoma State University

With support from NASA, the international GoAERO Prize competition recently announced funding for 14 U.S. university teams to build innovative new compact emergency response aircraft. 

The teams will develop prototype versions of Emergency Response Flyers, aircraft intended to perform rescue and response missions after disasters and in crisis situations. The flyers must be designed to deliver a first responder, evacuate victims, provide emergency medical supplies, and aid in humanitarian efforts. Teams will bring their test aircraft to a fly-off expected in 2027. 

These awards will provide students with an opportunity that might have otherwise been difficult – a chance to design and build potentially lifesaving aircraft.

koushik datta

koushik datta

NASA Project Manager

“These awards will provide students with an opportunity that might have otherwise been difficult – a chance to design and build potentially lifesaving aircraft,” said Koushik Datta, University Innovation Project manager in NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington. “At NASA, we’re looking forward to seeing how these young innovators can contribute to our mission to advance futuristic aviation technologies that can benefit first responders and the public.” 

With support from NASA’s University Innovation Project, GoAERO named 14 awardee teams at the following universities: 

  • Auburn University, in Leeds, Alabama  
  • California Polytechnic University, in Pomona  
  • Carnegie Mellon University, in Pittsburgh  
  • Embry-Riddle Aeronautical University, in Daytona Beach, Florida 
  • Georgia Institute of Technology, in Atlanta 
  • North Carolina Agricultural & Technical State University, in Greensboro  
  • North Carolina State University, in Raleigh 
  • The Ohio State University, in Columbus  
  • Penn State University, in State College  
  • Purdue University, in West Lafayette, Indiana  
  • Saint Louis University  
  • Texas A&M University, in College Station, and Oklahoma State University, in Stillwater  
  • University of Texas, Austin  
  • Virginia Tech, in Blacksburg 

Student teams can utilize the funds to purchase parts, materials, batteries, and other components for building their aircrafts. 

When naming the university awardees, GoAERO – in partnership with Boeing, RTX, and Honeywell – also announced 11 winners of Stage 1 of its competition. These include teams from the private sector and universities. These awardees were selected to build full- or smaller-scale flyers for evaluation. Eight entries will be selected for the next round of Stage 2 awards. The GoAERO Prize is still accepting new teams.  While prizes are awarded at Stage 1 and Stage 2, teams do not need to win prizes to continue on to the next stage or compete in the final fly-off.  

In addition to the University Innovation Project support for the university teams, NASA has partnered with GoAERO through a non-funded Space Act Agreement to provide U.S. teams with mentorship, educational opportunities, and access to specialized software tools. 

Facebook logo
Instagram logo
Linkedin logo

❌