❌

Normal view

Received before yesterday

NASA Sets Coverage for Axiom Mission 4 Launch, Arrival at Station

A white spacecraft faces the camera with its nose cone open, with Earth in the background.
The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.
Credit: NASA

NASA, Axiom Space, and SpaceX are targeting 8:22 a.m. EDT, Tuesday, June 10, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.

The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 12:30 p.m., Wednesday, June 11.

NASA will stream live coverage of launch and arrival activities on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.

NASA’s mission responsibility is for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s approximately two-week stay aboard the orbiting laboratory while conducting science, education, and commercial activities, and concludes once the spacecraft exits the station.


Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut SΕ‚awosz UznaΕ„ski-WiΕ›niewski of Poland and Tibor Kapu of Hungary.

As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.

The private mission also carries the first astronauts from Poland and Hungary to stay aboard the space station.

NASA will join the mission prelaunch teleconference hosted by Axiom Space (no earlier than one hour after completion of the Launch Readiness Review) at 6 p.m., Monday, June 9, with the following participants:

  • Dana Weigel, manager, International Space Station Program, NASA
  • Allen Flynt, chief of mission services, Axiom Space
  • William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX
  • Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force

To join the teleconference, media must register with Axiom Space by 12 p.m., Sunday, June 8, at:

https://bit.ly/4krAQHK

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Tuesday, June 10

6:15 a.m. – Axiom Space and SpaceX launch coverage begins.

7:25 a.m. – NASA joins the launch coverage on NASA+.

8:22 a.m. – Launch


NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.

Wednesday, June 11

10:30 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.

12:30 p.m. – Targeted docking to the space-facing port of the station’s Harmony module.

Arrival coverage will continue through hatch opening and welcome remarks.

All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.

The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

-end-

Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov

NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station

NASA and ISRO (Indian Space Research Organisation) are collaborating to launch scientific investigations aboard Axiom Mission 4, the fourth private astronaut mission to the International Space Station. These studies include examining muscle regeneration, growth of sprouts and edible microalgae, survival of tiny aquatic organisms, and human interaction with electronic displays in microgravity.

The mission is targeted to launch no earlier than Tuesday, June 10, aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from NASA’s Kennedy Space Center in Florida.

Regenerating muscle tissue

Dark red fibers stretch from the top to bottom of this image. Glowing blue dots are scattered along the fibers, both single dots and lines and clusters of dots.
Immunofluorescent image of human muscle fibers for Myogenesis-ISRO, showing nuclei (blue) and proteins (red).
Institute for Stem Cell Science and Regenerative Medicine, India

During long-duration spaceflights, astronauts lose muscle mass, and their muscle cells’ regenerative ability declines. Researchers suspect this may happen because microgravity interferes with metabolism in mitochondria, tiny structures within cells that produce energy. The Myogenesis-ISRO investigation uses muscle stem cell cultures to examine the muscle repair process and test chemicals known to support mitochondrial function. Results could lead to interventions that maintain muscle health during long-duration space missions, help people on Earth with age-related muscle loss and muscle-wasting diseases, and assist athletes and people recovering from surgery.

Sprouting seeds

A tangle of tannish-yellow seeds with small white sprouts fills a circular image.
This preflight image shows sprouted fenugreek seeds for the Sprouts-ISRO investigation.
Ravikumar Hosamani Lab, University of Agricultural Sciences, India

The Sprouts-ISRO investigation looks at the germination and growth in microgravity of seeds from greengram and fenugreek, nutritious plants commonly eaten on the Indian subcontinent. Bioactive compounds in fenugreek seeds also have therapeutic properties, and the leaves contain essential vitamins and minerals. Learning more about how space affects the genetics, nutritional content, and other characteristics over multiple generations of plants could inform the development of ways for future missions to reliably produce plants as a food source.Β 

Microalgae growth

A white square of foam holds nine rectangular clear bags filled with a pale green liquid. Each bag has two tubes protruding from it, one with a connection port and one with a clip, and there are yellow tags on one of the tubes for each bag, as well as stickers on the bags themselves.
Culture bags for Space Microalgae-ISRO.
Redwire

Space Microalgae-ISRO studies how microgravity affects microalgae growth and genetics. Highly digestible microalgae species packed with nutrients could be a food source on future space missions. These organisms also grow quickly, produce energy and oxygen, and consume carbon dioxide, traits that could be employed in life support and fuel systems on spacecraft and in certain scenarios on Earth.Β Β 

Tiny but tough

Whitson, wearing a black jacket and a smart watch on her left wrist, is looking at the microscope in front of her. The device, mounted on a silver plate connected to a station wall, has a white base with a black eyepiece in front and behind it, a flat black plate on a white arm and a black lens mounted above it. There are two black dials on the side of the base facing the camera.
NASA astronaut Peggy Whitson sets up the BioServe microscope, which will be used by the Voyager Tardigrade-ISRO investigation.
NASA

Tardigrades are tiny aquatic organisms that can tolerate extreme conditions on Earth. Voyager Tardigrade-ISRO tests the survival of a strain of tardigrades in the harsh conditions of space, including cosmic radiation and ultra-low temperatures, which kill most life forms. Researchers plan to revive dormant tardigrades, count the number of eggs laid and hatched during the mission, and compare the gene expression patterns of populations in space and on the ground.Β Results could help identify what makes these organisms able to survive extreme conditions and support development of technology to protect astronauts on future missions and those in harsh environments on Earth.Β 

Improving electronic interactions

O’Hara, wearing a long-sleeved black shirt and green pants, is holding an electronic tablet in front of her face with both hands. She is looking at the tablet. An open hatch behind her is filled with white storage containers.
NASA astronaut Loral O’Hara interacts with a touchscreen. Voyager Displays-ISRO examines how spaceflight affects use of such devices.
NASA

Research shows that humans interact with touchscreen devices differently in space. Voyager Displays – ISRO examines how spaceflight affects interactions with electronic displays such as pointing tasks, gaze fixation, and rapid eye movements along with how these interactions affect the user’s feelings of stress or wellbeing. Results could support improved design of control devices for spacecraft and habitats on future space missions as well as for aviation and other uses on Earth.

Download high-resolution photos and videos of the research mentioned in this article.

How Do We Do Research in Zero Gravity? We Asked a NASA Expert: Episode 62

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

How do we do research in zero gravity?

Actually when astronauts do experiments on the International Space Station, for instance, to environment on organisms, that environment is actually technically called microgravity. That is, things feel weightless, but we’re still under the influence of Earth’s gravity.

Now, the very microgravity that we’re trying to study up there can make experiments actually really kind of difficult for a bunch of different reasons.

First of all, stuff floats. So losing things in the ISS is a very real possibility. For example,

there was a set of tomatoes that was harvested in 2022 put it in a bag and it floated away and we couldn’t find it for eight months.

So to prevent this kind of thing from happening, we use a lot of different methods, such as using enclosed experiment spaces like glove boxes and glove bags. We use a lot of Velcro to stick stuff to.

Another issue is bubbles in liquids. So, on Earth, bubbles float up, in space they don’t float up, they’ll interfere with optical measurements or stop up your microfluidics. So space experiment equipment often includes contraptions for stopping or blocking or trapping bubbles.

A third issue is convection. So on Earth, gravity drives a process of gas mixing called convection and that helps circulate air. But without that in microgravity we worry about some of our experimental organisms and whether they’re going to get the fresh air that they need. So we might do things like adding a fan to their habitat, or if we can’t, we’ll take their habitat and put it somewhere where there might already be a fan on the ISS or in a corridor where we think they are going to be a lot of astronauts moving around and circulating the air.

Yet another issue is the fact that a lot of the laboratory instruments we use on Earth are not designed for microgravity. So to ensure that gravity doesn’t play a factor in how they work, we might do experiments on the ground where we turn them on their side or upside down, or rotate them on a rotisserie to make sure that they keep working.

So, as you can tell, for every experiment that we do on the International Space Station, there’s a whole team of scientists on the ground that has spent years developing the experiment design. And so I guess the answer to how we do research in microgravity is with a lot of practice and preparation.

[END VIDEO TRANSCRIPT]

Full Episode List

Full YouTube Playlist

πŸ’Ύ

When it comes to experiments in space, astronauts on the International Space Station face challenges you won’t find on Earth: bubbles don’t rise, things floa...

NASA Sets Coverage for 32nd SpaceX Resupply Mission Departure

The SpaceX Dragon cargo spacecraft, on NASA’s 30th Commercial Resupply Services mission, is pictured docked to the space-facing port on the International Space Station’s Harmony module on March 23, 2024.
Credit: NASA

Editor’s Note: This advisory was updated on May 22, 2025, to reflect new return timing for SpaceX’s 32nd commercial resupply services mission for NASA.

Editor’s Note: This advisory was updated on May 22, 2025, as NASA and SpaceX are standing down from Thursday’s undocking opportunity of Dragon. NASA will provide additional information on the next undocking opportunity as available.

NASA and its international partners will soon receive scientific research samples and hardware after a SpaceX Dragon spacecraft departs the International Space Station on Friday, May 23, for its return to Earth.

Live coverage of undocking and departure begins at 11:45 a.m. EDT on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.

The Dragon spacecraft will undock from the zenith, or space-facing, port of the station’s Harmony module at 12:05 p.m. and fire its thrusters to move a safe distance away from the station under command by SpaceX’s Mission Control in Hawthorne, California.

After re-entering Earth’s atmosphere, the spacecraft will splash down at approximately 1:45 a.m. on Sunday, May 25, off the coast of California. NASA will post updates on the agency’s space station blog. There is no livestream video of the splashdown.

Filled with nearly 6,700 pounds of supplies, science investigations, equipment, and food, the spacecraft arrived at the space station on April 22 after launching April 21 on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 32nd commercial resupply services mission.

Some of the scientific hardware and samples Dragon will return to Earth include MISSE-20 (Multipurpose International Space Station Experiment), which exposed various materials to space, including radiation shielding and detection materials, solar sails and reflective coatings, ceramic composites for reentry spacecraft studies, and resins for potential use in heat shields. Samples were retrieved on the exterior of the station and can improve knowledge of how these materials respond to ultraviolet radiation, atomic oxygen, charged particles, thermal cycling, and other factors.

Additionally, Astrobee-REACCH (Responsive Engaging Arms for Captive Care and Handling) is returning to Earth after successfully demonstrating grasping and relocating capabilities on the space station. The REACCH demonstration used Astrobee robots to capture space objects of different geometries or surface materials using tentacle-like arms and adhesive pads. Testing a way to safely capture and relocate debris and other objects in orbit could help address end-of-life satellite servicing, orbit change maneuvers, and orbital debris removal. These capabilities maximize satellite lifespan and protect satellites and spacecraft in low Earth orbit that provide services to people on Earth.

Books from the Story Time from Space project also will return. Crew members aboard the space station read five science, technology, engineering, and mathematics-related children’s books in orbit and videotaped themselves completing science experiments. Video and data collected during the readings and demonstrations were downlinked to Earth and were posted in a video library with accompanying educational materials.

Hardware and data from a one-year technology demonstration called OPTICA (Onboard Programmable Technology for Image Compression and Analysis) also will return to Earth. The OPTICA technology was designed to advance transmission of real-time, ultra-high-resolution hyperspectral imagery from space to Earth, and it provided valuable insights for data compression and processing that could reduce the bandwidth required for communication, lowering the cost of acquiring data from space-based imaging systems without reducing the volume of data. This technology also could improve services, such as disaster response, that rely on Earth observations.

For more than 24 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond.

Learn more about the International Space Station at:

https://www.nasa.gov/international-space-station

-end-

Julian Coltre / Josh Finch
Headquarters, Washington
202-358-1600
julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov

Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov

Share

Details

Last Updated
May 22, 2025
Editor
Jessica Taveau

Spacewalk Research and Technology

4 Min Read

Spacewalk Research and Technology

NASA astronaut Anne McClain prepares spacesuits ahead of the May 2025 spacewalk.
Credits: NASA

Science in Space: May

Crew members on the International Space Station periodically conduct spacewalks to perform a variety of tasks such as installing, upgrading, and repairing equipment. During a spacewalk on May 1, astronauts installed hardware to support the planned addition of a seventh roll-out solar array on the exterior of the space station. Each of these arrays produces more than 20 kilowatts of electricity and together they will increased power production by up to 30%, enabling more scientific operations on the orbiting lab.

Wilmore is in the center of the image, wearing a white spacesuit, helmet, boots, and gloves. He is facing downward toward a silver, cylindrical module of the space station and holding onto a brass-colored railing on it with both hands. Behind him is a long white robotic arm with the word CANADA in large letters. To his right, part of one of the station’s solar arrays is visible.
NASA astronaut Butch Wilmore collects samples from the exterior of the space station for ISS External Microorganisms.
NASA

Some spacewalks include operations for scientific research. On January 20, 2025, crew members collected samples for ISS External Microorganisms, an investigation examining whether microorganisms have exited through station vents and can survive in space. Results could help determine changes needed in design of spacecraft (including spacesuits) to prevent human-associated microbes from contaminating Mars and other exploration destinations.

Radiation monitoring

Williams is in a white spacesuit with a Canadian flag on his left arm and various tools connected to straps on the front of the suit. He is holding on to a gold-colored railing attached to the space station with his right hand and reaching for a tool with his left. Behind him is the blackness of space.
CSA astronaut Dave Williams on a spacewalk in 2007. CSA studied the radiation dose crew members experience while outside the station.
NASA

The CSA (Canadian Space Agency) investigation EVA Radiation Monitoring, used a miniature, power-efficient wireless radiation measurement system or dosimeter worn by crew members during spacewalks. This type of device could help identify parts of the body that are exposed to the highest radiation levels during spacewalks. Results showed that this type of device is a feasible way to monitor individual dose during spacewalks. The device also has potential uses on Earth, such as monitoring radiation exposure during cancer treatments.

Spacesuit technology

Spacesuits are essentially one-person spacecraft that protect their wearers from the hazards of space, including radiation and extreme temperatures. Space station research is helping improve the suits and tools for spacewalks and activities outside spacecraft and for the exploration of the Moon and Mars.

SpaceSkin on ExHAM, a JAXA (Japan Aerospace Exploration Agency) investigation, evaluated the durability of a fabric with imbedded sensors to detect damage. Sensors integrated into the exposed outermost layer of a spacesuit could detect damage such as impacts from micrometeoroids. Researchers documented factors to consider in design of textiles with sensing capabilities as well as the ability to withstand the hazards of space. Such fabrics could be integrated into spacesuits and habitats to help protect astronauts on spacewalks and future exploration missions.

This image is taken from above Forrester, who is wearing a white spacesuit and gloves and a helmet with a gold visor. He is facing to the left of the image, looking at a large rectangular panel and holding a gold handle on its top with his right hand. On the side of the panel are multiple sample slots, including four square ones in its upper left corner that are blue and three shades of orange and three sections of circular slots that are black or white in color. The panel is mounted on a metal rod extending from the exterior of the space station.
NASA astronaut Patrick G. Forrester works with the MISSE facility.
NASA

Researchers use the Materials International Space Station Experiment or MISSE facility on the exterior of the space station for experiments exposing various materials and components to the harsh environment of space. Along with solar cells, electronics, and coatings, MISSE-7 tested pristine fibers from Apollo mission spacesuits and others scratched by lunar dust to examine the combined effects of abrasion and radiation damage. Researchers report that the fabrics significantly degraded, suggesting the need for ways to prevent or mitigate radiation damage to spacesuits on extended missions to the Moon.

MISSE-9 tested spacesuit materials treated with shear-thickening fluids. These suspensions of tiny particles in a fluid react to stress by quickly changing from a liquid to a solid. The research showed that the materials maintained their mechanical performance characteristics and puncture resistance after extended exposure.

Keeping cool also is important on a spacewalk, where temperatures can reach 250 degrees. SERFE, or Spacesuit Evaporation Rejection Flight Experiment, tested a technology using water evaporation to remove heat from a spacesuit so crew members and equipment remain at appropriate temperatures during spacewalks. A current cooling method, called sublimation, exposes small amounts of water to space, causing it to freeze and then turn into vapor that disperses, removing heat as it does so. The SERFE technology may be less susceptible to water contamination than sublimation.

Exiting station

The large white robotic arm extends from the upper left of the image, with two joints near its end, which is connected to a large, drum-shaped silver dome. In the background is blue sea on an Earth covered with thin white clouds.
The Nanoracks Bishop Airlock is attached to the Canadarm2 robotic arm as the International Space Station orbits 264 miles above the Atlantic Ocean off the coast of Brazil. Ocean off the coast of southern Brazil at the time of this photograph.
NASA

Crew members use specialized airlocks to exit the station for spacewalks. Airlocks also make it possible to deploy satellites and other external equipment. The Nanoracks Bishop Airlock was the first commercially owned and operated airlock installed on the space station. Its size, design, and automation enable faster and more efficient movement of materials out of and into the station, reducing the crew and robotics time needed. In addition to facilitating spacewalks, this facility could support increased commercial use of the space station and expand research capabilities.

πŸ’Ύ

Imagine you are an Astronaut on the Moon. Your job for the next eight hours will be exploring, collecting science samples, traversing up and down lunar hills...
❌