❌

Normal view

Before yesterdayMain stream

NASA’s Hubble Provides Bird’s-Eye View of Andromeda Galaxy’s Ecosystem

27 February 2025 at 10:00
5 Min Read

NASA’s Hubble Provides Bird’s-Eye View of Andromeda Galaxy’s Ecosystem

A wide-angle view of the distribution of 36 satellite galaxies orbiting the large Andromeda galaxy, which resembles bees swarming around a hive. Each dwarf is a fuzzy pinpoint identified by a yellow circle. Most of the photo is dominated by myriad pinpoint-white foreground stars inside our Milky Way galaxy.
A view of the distribution of known satellite galaxies orbiting the large Andromeda galaxy (M31), located 2.5 million light-years away.Β 
Credits:
NASA, ESA, Alessandro Savino (UC Berkeley), Joseph DePasquale (STScI), Akira Fujii DSS2

Located 2.5 million light-years away, the majestic Andromeda galaxy appears to the naked eye as a faint, spindle-shaped object roughly the angular size of the full Moon. What backyard observers don’t see is a swarm of nearly three dozen small satellite galaxies circling the Andromeda galaxy, like bees around a hive.

These satellite galaxies represent a rambunctious galactic β€œecosystem” that NASA’s Hubble Space Telescope is studying in unprecedented detail. This ambitious Hubble Treasury Program used observations from more than a whopping 1,000 Hubble orbits. Hubble’s optical stability, clarity, and efficiency made this ambitious survey possible. This work included building a precise 3D mapping of all the dwarf galaxies buzzing around Andromeda and reconstructing how efficiently they formed new stars over the nearly 14 billion years of the universe’s lifetime.

Telescope image with infographic overlays. At top left the text reads, Hubble Space Telescope, Survey of Andromeda's Satellite Galaxies. A large field of galaxies take up the left three-quarters. This portion shows hundreds scattered across the black background of space. Most are tiny white dots. Thirty-six tiny galaxies are circled in yellow. Four have labels. From top to bottom, left to right: NGC 185, NGC 147, NGC 205 (M110), NGC 221 (M32). NGC 221 appears slightly lower than a larger, angled oblong galaxy, which is labeled Andromeda Galaxy (M31). Along the right is a column separated into four boxes, each a zoomed in portrait of the labeled galaxies. From top to bottom: NGC 185 looks like a dim blue haze that takes up most of the frame; NGC 147 like a small, very dim oval, with scattered dots nearby; NGC 221 is large and bright white, and takes up most of the box; NGC 205 is not quite as large as NGC 221, and is pinker, with larger dots throughout the frame.
This is a wide-angle view of the distribution of known satellite galaxies orbiting the large Andromeda galaxy (M31), located 2.5 million light-years away. The Hubble Space Telescope was used to study the entire population of 36 mini-galaxies circled in yellow. Andromeda is the bright spindle-shaped object at image center. All the dwarf galaxies seem to be confined to a plane, all orbiting in the same direction. The wide view is from ground-based photography. Hubble’s optical stability, clarity, and efficiency made this ambitious survey possible. Hubble close up snapshots of four dwarf galaxies are on image right. The most prominent dwarf galaxy is M32 (NGC 221), a compact ellipsoidal galaxy that might be the remnant core of a larger galaxy that collided with Andromeda a few billion years ago.
NASA, ESA, Alessandro Savino (UC Berkeley), Joseph DePasquale (STScI), Akira Fujii DSS2

In theΒ studyΒ published inΒ The Astrophysical Journal, Hubble reveals a markedly different ecosystem from the smaller number of satellite galaxies that circle our Milky Way. This offers forensic clues as to how our Milky Way galaxy and Andromeda have evolved differently over billions of years. Our Milky Way has been relatively placid. But it looks like Andromeda has had a more dynamic history, which was probably affected by a major merger with another big galaxy a few billion years ago. This encounter, and the fact that Andromeda is as much as twice as massive as our Milky Way, could explain its plentiful and diverse dwarf galaxy population.

Surveying the Milky Way’s entire satellite system in such a comprehensive way is very challenging because we are embedded inside our galaxy. Nor can it be accomplished for other large galaxies because they are too far away to study the small satellite galaxies in much detail. The nearest galaxy of comparable mass to the Milky Way beyond Andromeda is M81, at nearly 12 million light-years.

This bird’s-eye view of Andromeda’s satellite system allows us to decipher what drives the evolution of these small galaxies. β€œWe see that the duration for which the satellites can continue forming new stars really depends on how massive they are and on how close they are to the Andromeda galaxy,” said lead author Alessandro Savino of the University of California at Berkeley. β€œIt is a clear indication of how small-galaxy growth is disturbed by the influence of a massive galaxy like Andromeda.”

β€œEverything scattered in the Andromeda system is very asymmetric and perturbed. It does appear that something significant happened not too long ago,” said principal investigator Daniel Weisz of the University of California at Berkeley. β€œThere’s always a tendency to use what we understand in our own galaxy to extrapolate more generally to the other galaxies in the universe. There’s always been concerns about whether what we are learning in the Milky Way applies more broadly to other galaxies. Or is there more diversity among external galaxies? Do they have similar properties? Our work has shown that low-mass galaxies in other ecosystems have followed different evolutionary paths than what we know from the Milky Way satellite galaxies.”

For example, half of the Andromeda satellite galaxies all seem to be confined to a plane, all orbiting in the same direction. β€œThat’s weird. It was actually a total surprise to find the satellites in that configuration and we still don’t fully understand why they appear that way,” said Weisz.

This animation begins with a view of the neighboring Andromeda galaxy. We zoom through a scattering of foreground stars and enter the inky blackness of intergalactic space. We cross 2.5 million light-years to reach the Andromeda system, consisting of 36 dwarf satellite galaxies orbiting the giant spindle-shaped Andromeda galaxy at image center. An ambitious survey by the Hubble Space Telescope was made to plot the galaxy locations in three-dimensional space. In this video we circle around a model of the Andromeda system based on real Hubble observational data.
NASA, ESA, Christian Nieves (STScI), Alessandro Savino (UC Berkeley); Acknowledgment: Joseph DePasquale (STScI), Frank Summers (STScI), Robert Gendler

The brightest companion galaxy to Andromeda is Messier 32 (M32). This is a compact ellipsoidal galaxy that might just be the remnant core of a larger galaxy that collided with Andromeda a few billion years ago. After being gravitationally stripped of gas and some stars, it continued along its orbit. Galaxy M32 contains older stars, but there is evidence it had a flurry of star formation a few billion years ago. In addition to M32, there seems to be a unique population of dwarf galaxies in Andromeda not seen in the Milky Way. They formed most of their stars very early on, but then they didn’t stop. They kept forming stars out of a reservoir of gas at a very low rate for a much longer time.

β€œStar formation really continued to much later times, which is not at all what you would expect for these dwarf galaxies,” continued Savino. β€œThis doesn’t appear in computer simulations. No one knows what to make of that so far.”

β€œWe do find that there is a lot of diversity that needs to be explained in the Andromeda satellite system,” added Weisz. β€œThe way things come together matters a lot in understanding this galaxy’s history.”

Hubble is providing the first set of imaging where astronomers measure the motions of the dwarf galaxies. In another five years Hubble or NASA’s James Webb Space Telescope will be able to get the second set of observations, allowing astronomers to do a dynamical reconstruction for all 36 of the dwarf galaxies, which will help astronomers to rewind the motions of the entire Andromeda ecosystem billions of years into the past.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Explore More

Facebook logo
Instagram logo

Media Contact:

Claire AndreoliΒ (claire.andreoli@nasa.gov)
NASA’sΒ Goddard Space Flight Center,Β Greenbelt, Maryland

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Science Contact:

Alessandro Savino
University of California, Berkeley, California

Hubble Goes Supernova Hunting

7 February 2025 at 06:00
A supernova appears as a small but bright pink-white dot at the exact center of the image. It lies in a spiral galaxy, close to the glowing center and next to bright patches of blue stars in the galaxy. A few minor galaxies are visible around the comparatively large spiral as small glowing disks, while distant galaxies appear as mere orangish spots and smudges, all are on a black background.
Hubble captured this image of supernova SN 2022abvt (the pinkish-white dot at image center) about two months after it was discovered in 2022.
ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)

A supernova and its host galaxy are the subject of this NASA/ESA Hubble Space Telescope image. The galaxy in question is LEDA 132905 in the constellation Sculptor. Even at more than 400 million light-years away, LEDA 132905’s spiral structure is faintly visible, as are patches of bright blue stars.

The bright pinkish-white dot in the center of the image, between the bright center of the galaxy and its faint left edge, is a supernova named SN 2022abvt. Discovered in late 2022, Hubble observed SN 2022abvt about two months later. This image uses data from a study of Type Ia supernovae, which occur when the exposed core of a dead star ignites in a sudden, destructive burst of nuclear fusion. Researchers are interested in this type of supernova because they can use them to measure precise distances to other galaxies.

The universe is a big place, and supernova explosions are fleeting. How is it possible to be in the right place at the right time to catch a supernova when it happens? Today, robotic telescopes that continuously scan the night sky discover most supernovae. The Asteroid Terrestrial-impact Last Alert System, or ATLAS, spotted SN 2022abvt. As the name suggests, ATLAS tracks down the faint, fast-moving signals from asteroids close to Earth. In addition to searching out asteroids, ATLAS also keeps tabs on objects that brighten or fade suddenly, like supernovae, variable stars, and galactic centers powered by hungry black holes.

Facebook logo
Instagram logo

Explore More

Media Contact:

Claire AndreoliΒ (claire.andreoli@nasa.gov)
NASA’sΒ Goddard Space Flight Center,Β Greenbelt, MD

Share

Details

Last Updated
Feb 07, 2025
Editor
Andrea Gianopoulos

Hubble Rings In the New Year

10 January 2025 at 05:31

2 min read

Hubble Rings In the New Year

Many mostly small, bright objects scattered over a dark background in space. In the top half on the right is an elliptical galaxy, a round light larger than the others, with a slightly warped ring of light around it. In the bottom half there is a barred spiral galaxy, big enough that we can see its bluish arms and its core in detail. Other objects include distant galaxies and nearby stars.
This NASA/ESA Hubble Space Telescope image holds an array of stars and galaxies.
ESA/Hubble, NASA, and D. Erb

This NASA/ESA Hubble Space Telescope image reveals a tiny patch of sky in the constellation Hydra. The stars and galaxies depicted here span a mind-bending range of distances. The objects in this image that are nearest to us are stars within our own Milky Way galaxy. You can easily spot these stars by their diffraction spikes, lines that radiate from bright light sources, like nearby stars, as a result of how that light interacts with Hubble’s secondary mirror supports. The bright star that sits just at the edge of the prominent bluish galaxy is only 3,230 light-years away, as measured by ESA’s Gaia space observatory.

Behind this star is a galaxy named LEDA 803211. At 622 million light-years distant, this galaxy is close enough that its bright galactic nucleus is clearly visible, as are numerous star clusters scattered around its patchy disk. Many of the more distant galaxies in this frame appear star-like, with no discernible structure, but without the diffraction spikes of a star in our galaxy.

Of all the galaxies in this frame, one pair stands out: a smooth golden galaxy encircled by a nearly complete ring in the upper-right corner of the image. This curious configuration is the result of gravitational lensing that warps and magnifies the light of distant objects. Einstein predicted the curving of spacetime by matter in his general theory of relativity, and galaxies seemingly stretched into rings like the one in this image are called Einstein rings.

The lensed galaxy, whose image we see as the ring, lies incredibly far away from Earth: we are seeing it as it was when the universe was just 2.5 billion years old. The galaxy acting as the gravitational lens itself is likely much closer. A nearly perfect alignment of the two galaxies is necessary to give us this rare kind of glimpse into galactic life in the early days of the universe.

Explore More

Facebook logo
Instagram logo

Media Contact:

Claire AndreoliΒ (claire.andreoli@nasa.gov)
NASA’sΒ Goddard Space Flight Center,Β Greenbelt, MD

❌
❌