Normal view

Yesterday — 25 April 2025Main stream

Michael Ciancone Builds a Lasting Legacy in Human Spaceflight 

15 April 2025 at 08:53

When Michael Ciancone joined NASA in 1983, he could hardly imagine what his 40-plus-year career would entail. From honoring and preserving spaceflight history to advancing safety standards, he has undoubtedly woven his knowledge and experience into NASA’s history as well as its future.  

Ciancone currently serves as the Orion Program safety lead, overseeing the Office of Safety and Mission Assurance’s effort to ensure the safety of the Orion crew, vehicle, and associated hardware. In his role, he manages safety reviews of all flight hardware, with a current focus on Artemis II. His everyday success is backed by decades of learning and global collaboration within the areas of human spaceflight safety and history.  

A man wearing a neon green polo smiles outside on a sunny day in front of a space shuttle.
Michael Ciancone with Space Shuttle Atlantis at the launch gantry at NASA’s Kennedy Space Center in Florida in 2009.
Image courtesy of Michael Ciancone 

In 1997, Ciancone transferred from NASA’s Glenn Research Center in Cleveland to Johnson Space Center in Houston to serve as the executive officer for the Shuttle/International Space Station Payload Safety Review Panel, as well as group lead for Payload Safety. To better understand the scope and nature of his new role, Ciancone sought opportunities to engage with other safety professionals at conferences and symposia. At the suggestion of his manager, Ciancone instead organized a conference on spaceflight safety for payloads at Johnson, creating a forum for colleagues from the international spaceflight community.  

These efforts were the catalyst for the formation of the International Association for the Advancement of Spaceflight Safety (IAASS), an organization founded by Ciancone and Skip Larsen of Johnson along with Alex Soons and Tommaso Sgobba of the European Space Agency. The IAASS is committed to furthering international cooperation and scientific advancements in space system safety and is recognized as the pre-eminent international forum for spaceflight and safety professionals. The organization is responsible for hosting an annual conference, conducting specialized safety training, and publishing seminal books on the aspects of spaceflight safety. 

Throughout his tenure, Ciancone has worked closely with colleagues from around the world and he emphasizes that human spaceflight is a global endeavor made possible through respect and collaboration. “[In human spaceflight] there are different and equally valid approaches for achieving a common goal. Successful partnership requires an understanding and respect for the experiences and history of international partners,” he said.  

A group of nine people stand in front of a spacecraft model.
Michael Ciancone (far left) pictured with Spaceflight Safety team members from NASA, the European Space Agency (ESA), and Airbus during a joint NASA/ESA safety review of the European Service Module (ESM) of the Orion Program at the Airbus facility in Bremen, Germany.
Image courtesy of Michael Ciancone

In addition to his dedication to spaceflight safety, Ciancone is active in the field of spaceflight history. He serves as the chair of the History Committee of the American Astronautical Society and, as a member of the International Academy of Astronautics, he also serves on the History Committee. Working in this community has made Ciancone more keenly aware of dreams of spaceflight as viewed from a historical perspective and guides his daily work at NASA. 

Two people pose in front of a spaceflight model at an exhibit.
Michael Ciancone (left) with Giovanni Caprara, science editor for the Corriere della Sera and co-author of “Early Italian Contributions to Astronautics: From the First Visionary to Construction of the first Italian Liquid Propellant Rocket” during the 75th International Astronautical Congress in Milan, Italy.
Image courtesy of Michael Ciancone

Beyond his technical achievements, Ciancone has also found creative ways to spice up the spaceflight community. While at Glenn Research Center, he co-founded the NASA Hot Pepper Club—a forum for employees who share a passion for cultivating and consuming hot peppers and pepper products. The club served as a unique space for camaraderie and connection, adding flavor to NASA life.  

Ciancone’s immersion in spaceflight history and spaceflight safety has shaped his unique and valuable perspective. In addition to encouraging others to embrace new challenges and opportunities, Ciancone paraphrases Albert Einstein to advise the Artemis Generation to “learn from the past, live in the moment, and dream of the future.” This mentality has enabled him to combine his interest in spaceflight history with his work on Orion over the past 15 years, laying the groundwork for what he refers to as “future history.”  

NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars

8 April 2025 at 12:15
Houston We Have a Podcast: Ep. 283: The Artemis II Astronauts
NASA astronauts (left to right) Christina Koch, Victor Glover, Reid Wiseman, Canadian Space Agency Astronaut Jeremy Hansen. Credit: NASA/Josh Valcarcel

The Artemis II test flight will be NASA’s first mission with crew under Artemis. Astronauts on their first flight aboard NASA’s Orion spacecraft will confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space.  Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.

The unique Artemis II mission profile will build upon the uncrewed Artemis I flight test by demonstrating a broad range of SLS (Space Launch System) and Orion capabilities needed on deep space missions. This mission will prove Orion’s critical life support systems are ready to sustain our astronauts on longer duration missions ahead and allow the crew to practice operations essential to the success of Artemis III and beyond.

Leaving Earth

The mission will launch a crew of four astronauts from NASA’s Kennedy Space Center in Florida on a Block 1 configuration of the SLS rocket. Orion will perform multiple maneuvers to raise its orbit around Earth and eventually place the crew on a lunar free return trajectory in which Earth’s gravity will naturally pull Orion back home after flying by the Moon. The Artemis II astronauts are NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen.

The initial launch will be similar to Artemis I as SLS lofts Orion into space, and then jettisons the boosters, service module panels, and launch abort system, before the core stage engines shut down and the core stage separates from the upper stage and the spacecraft. With crew aboard this mission, Orion and the upper stage, called the interim cryogenic propulsion stage (ICPS), will then orbit Earth twice to ensure Orion’s systems are working as expected while still close to home. The spacecraft will first reach an initial orbit, flying in the shape of an ellipse, at an altitude of about 115 by 1,400 miles. The orbit will last a little over 90 minutes and will include the first firing of the ICPS to maintain Orion’s path. After the first orbit, the ICPS will raise Orion to a high-Earth orbit. This maneuver will enable the spacecraft to build up enough speed for the eventual push toward the Moon. The second, larger orbit will take approximately 23.5 hours with Orion flying in an ellipse between about 115 and 46,000 miles above Earth. For perspective, the International Space Station flies a nearly circular Earth orbit about 250 miles above our planet. 

After the burn to enter high-Earth orbit, Orion will separate from the upper stage. The expended stage will have one final use before it is disposed through Earth’s atmosphere—the crew will use it as a target for a proximity operations demonstration. During the demonstration, mission controllers at NASA’s Johnson Space Center in Houston will monitor Orion as the astronauts transition the spacecraft to manual mode and pilot Orion’s flight path and orientation. The crew will use Orion’s onboard cameras and the view from the spacecraft’s windows to line up with the ICPS as they approach and back away from the stage to assess Orion’s handling qualities and related hardware and software. This demonstration will provide performance data and operational experience that cannot be readily gained on the ground in preparation for critical rendezvous, proximity operations and docking, as well as undocking operations in lunar orbit beginning on Artemis III.

Checking Critical Systems

Following the proximity operations demonstration, the crew will turn control of Orion back to mission controllers at Johnson and spend the remainder of the orbit verifying spacecraft system performance in the space environment. They will remove the Orion Crew Survival System suit they wear for launch and spend the remainder of the in-space mission in plain clothes, until they don their suits again to prepare for reentry into Earth’s atmosphere and recovery from the ocean.

While still close to Earth, the crew will assess the performance of the life support systems necessary to generate breathable air and remove the carbon dioxide and water vapor produced when the astronauts breathe, talk, or exercise. The long orbital period around Earth provides an opportunity to test the systems during exercise periods, where the crew’s metabolic rate is the highest, and a sleep period, where the crew’s metabolic rate is the lowest. A change between the suit mode and cabin mode in the life support system, as well as performance of the system during exercise and sleep periods, will confirm the full range of life support system capabilities and ensure readiness for the lunar flyby portion of the mission.

Orion will also checkout the communication and navigation systems to confirm they are ready for the trip to the Moon. While still in the elliptical orbit around Earth, Orion will briefly fly beyond the range of GPS satellites and the Tracking and Data Relay Satellites of NASA’s Space Network to allow an early checkout of agency’s Deep Space Network communication and navigation capabilities. When Orion travels out to and around the Moon, mission control will depend on the Deep Space Network to communicate with the astronauts, send imagery to Earth, and command the spacecraft.

After completing checkout procedures, Orion will perform the next propulsion move, called the translunar injection (TLI) burn. With the ICPS having done most of the work to put Orion into a high-Earth orbit, the service module will provide the last push needed to put Orion on a path toward the Moon. The TLI burn will send crew on an outbound trip of about four days and around the backside of the Moon where they will ultimately create a figure eight extending over 230,000 miles from Earth before Orion returns home.

To the Moon and “Free” Ride Home

On the remainder of the trip, astronauts will continue to evaluate the spacecraft’s systems, including demonstrating Earth departure and return operations, practicing emergency procedures, and testing the radiation shelter, among other activities.

The Artemis II crew will travel approximately 4,600 miles beyond the far side of the Moon. From this vantage point, they will be able to see the Earth and the Moon from Orion’s windows, with the Moon close in the foreground and the Earth nearly a quarter-million miles in the background.

With a return trip of about four days, the mission is expected to last about 10 days. Instead of requiring propulsion on the return, this fuel-efficient trajectory harnesses the Earth-Moon gravity field, ensuring that—after its trip around the far side of the Moon—Orion will be pulled back naturally by Earth’s gravity for the free return portion of the mission.

Two Missions, Two Different Trajectories

Following Artemis II, Orion and its crew will once again travel to the Moon, this time to make history when the next astronauts walk on the lunar surface. Beginning with Artemis III, missions will focus on establishing surface capabilities and building Gateway in orbit around the Moon.

Through Artemis, NASA will explore more of the Moon than ever before and create an enduring presence in deep space.

Artemis II Insignia Honors All

3 April 2025 at 12:54
Four hands hold onto a corner of the Artemis II mission patch. The patch is five-sided, with a black background. The last names of the crew – Wiseman, Glover, Koch, and Hansen – are written along the patch’s bottom left corner. The Earth and Moon are visible on the patch, reminiscent of the famous “Earthrise” photo. A red line curves through the lines of a letter “A,” then around the Moon and Earth. Next to the “A” are two lines that look like the Roman numeral “I”: this represents Artemis II.
Robert Markowitz

The four astronauts who will be the first to fly to the Moon under NASA’s Artemis campaign have designed an emblem to represent their mission that references both their distant destination and the home they will return to. The crew unveiled their patch in this April 2, 2025, photo.

The crew explained the patch’s symbolism, and its play on the abbreviation of Artemis II to AII, with the following description: The Artemis II test flight begins when a mighty team launches the first crew of the Artemis generation. This patch designates the mission as “AII,” signifying not only the second major flight of the Artemis campaign, but also an endeavor of discovery that seeks to explore for all and by all. Framed in Apollo 8’s famous Earthrise photo, the scene of the Earth and the Moon represents the dual nature of human spaceflight, both equally compelling: The Moon represents our exploration destination, focused on discovery of the unknown. The Earth represents home, focused on the perspective we gain when we look back at our shared planet and learn what it is to be uniquely human. The orbit around Earth highlights the ongoing exploration missions that have enabled Artemis to set sights on a long-term presence on the Moon and soon, Mars.

Commander Reid Wiseman, pilot Victor Glover, and mission specialist Christina Koch from NASA, and mission specialist Jeremy Hansen from CSA (Canadian Space Agency), will venture around the Moon in 2026 on Artemis II. The 10-day flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket, Orion spacecraft, for the first time with astronauts. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

Text credit: Brandi Dean, Courtney Beasley

Image credit: NASA/Robert Markowitz

Artemis Astronauts & Orion Leadership Visit NASA Ames

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two astronauts in blue jumpsuits stand at the left of the image, listening to a man speaking on the right side of the image. People and equipment fill the background.
Astronauts Victor Glover and Christina Koch tour the Arc Jet Facility at NASA’s Ames Research Center, learning more about the testing equipment’s capabilities to analyze thermal protection systems from George Raiche, thermophysics facilities branch chief at Ames.
NASA/Donald Richey

As NASA prepares to send astronauts to the Moon aboard the Orion spacecraft, research, testing, and development at NASA’s Ames Research Center in California’s Silicon Valley has played a critical role.

Recently, Ames welcomed Artemis II astronauts Christina Koch and Victor Glover and Orion leaders Debbie Korth, deputy program manager, and Luis Saucedo, deputy crew and service module manager, to tour Ames facilities that support the Orion Program and celebrate the achievements of employees.

The group started their visit at the Arc Jet Complex, where researchers use extremely hot, high-speed gases to simulate the intense heat of atmospheric reentry before visiting the Sensors & Thermal Protection Systems Advanced Research Laboratories. The team works to develop sensors and flight instrumentation that measure heat shield response throughout a mission.

These systems were used to develop and test Orion’s thermal protection system to ensure the safety of astronauts during future missions. After the successful return of the Artemis I Orion spacecraft, Ames research was essential when analyzing unexpected charring loss on the heat shield.

A woman speaks at a podium, with an American flag and two astronauts in blue jumpsuits in the background.
Debbie Korth, Orion deputy program manager, presents awards to the Ames workforce at the Orion Circle of Excellence Awards Ceremony, while astronauts Christina Koch and Victor Glover look on.
NASA/Donald Richey

The visit culminated in an award ceremony to honor employees with outstanding performance and a legacy of service to the Orion Program. Thirty-two employees were honored for their individual or team contributions.

“The Ames workforce has played an important role in developing, testing, and validating the Orion spacecraft’s thermal protection system as well as supporting its software and guidance, navigation, and control,” said Eugene Tu, NASA Ames center director. “I’m pleased to see their contributions recognized and celebrated by program leadership and two of the astronauts whose safety and success were in mind when ensuring these systems are safe, reliable, and the highest quality possible.”

❌
❌