Normal view

Before yesterdayMain stream

Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project

10 February 2025 at 08:00

2 min read

Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project

A group of eight people wearing red and black cold-weather gear with neon yellow hoods are seated in a black inflatable boat in a polar environment. They are smiling and holding scientific equipment, including a plankton net, a mug, and an orange device. Snow-covered mountains and an icy ocean surround them under an overcast sky.
Adventurous travellers aboard the Viking Octantis ship, sampling phytoplankton from  Danco Island in the Errera Channel for the FjordPhyto project.
Allison Cusick

FjordPhyto is a collective effort where travelers on tour expedition vessels in Antarctica help scientists at Scripps Institution of Oceanography and Universidad Nacional de La Plata study phytoplankton. Now project leader Dr. Allison Cusick has a Ph.D.! . Dr. Cusick studies how melting glaciers influence phytoplankton in the coastal regions. She wrote her doctoral dissertation based on the data collected by FjordPhyto volunteers.

“Travelers adventure to the wild maritime climate of Antarctica and help collect samples from one of the most data-limited regions of the world,” said Cusick.  “While on vacation, they can volunteer to join a FjordPhyto science boat experience where they spend an hour collecting water measurements like salinity, temperature, chlorophyll-a, turbidity, as well as physical samples for molecular genetics work, microscopy identification, and carbon biomass estimates. It’s a full immersion into the ecosystem and the importance of polar research!”

Cusick successfully defended her thesis on December 18, 2024, earning a Ph.D. in Oceanography from the Scripps Institution of Oceanography. Hers is the second Ph.D.  based on data from the FjordPhyto project. Martina Mascioni from FjordPhyto team earned her Ph.D. from the National University of La Plata (Argentina) in 2023.

The project is a hit with travelers, too.

“It’s incredibly inspiring to be part of a program like this that’s open to non-specialist involvement,” said one volunteer, a retired biology teacher aboard the Viking Octantis ship, who continued to say, “Thank you for letting us be a part of the science and explaining so clearly why it matters to the bigger picture.”

If you would like to get involved, go to www.fjordphyto.org and reach out to the team!

Share

Details

Last Updated
Feb 10, 2025

Newly Selected Citizen Science Proposals: A Peek at What’s Next

13 January 2025 at 11:05

7 min read

Newly Selected Citizen Science Proposals: A Peek at What’s Next

Last year, the NASA citizen science community saw a prize from the White House and two prizes from professional societies: one from the Division of Planetary Sciences and one from the American Astronomical Society. Our teams published two papers in the prestigious journal, Nature, one on a planetary crash and one about a distant world that seems to have auroras. 2024 was a year of 5000 comets, two solar eclipses and plenty of broken records.

But we’re not stopping to rest on our laurels. In 2024, NASA selected 25 new citizen science proposals for funding that will lead to new projects and new results to look forward to in 2025 and beyond. Here’s a roundup of those selections and the principal investigators (PIs) of each team—a sneak peek at what’s coming next in NASA citizen science! Note that these investigations are research grants–some of them will result in new opportunities for the public, others will use results from earlier citizen science projects or develop new tools.

Photo of a rare atmospheric phenomenon known as a red sprite, captured against a starry night sky. The red sprite appears as a glowing, jagged, and diffuse burst of red light, topped by a faint green halo. The horizon shows silhouetted mountains and a distant illuminated cloud, adding depth to the image.
Bright green glow observed from Texas on June 1, 2024, by Stephen Hummel. A new grant to the Spritacular project team will support citizen science research on this newly-discovered phenomenon.
Stephen Hummel

Citizen Science Seed Funding Program (CSSFP)

The CSSFP aims to support scientists and other experts to develop citizen science projects and to expand the pool of scientists who use citizen science techniques in their science investigations. Four divisions of NASA’s Science Mission Directorate are participating in the CSSFP: the Astrophysics Division, the Biological and Physical Sciences Division, the Heliophysics Division, and the Planetary Science Division. Nine new investigations were recently selected through this program:

Astrophysics Division

  • SuPerPiG Observing Grid, PI Rachel Huchmala, Boise State University. Use a small telescope to monitor exoplanets to improve our knowledge of their orbits.
  • Understanding the Nature of Clumpy Galaxies with Clump-Scout 2: a New Citizen-Science Project to Characterize Star-Forming Clumps in Nearby Galaxies. PI Claudia Scarlata, University of Minnesota. Label clumps of distant galaxies to help us understand Hubble Space Telescope data.
  • ‘Backyard Worlds: Binaries’ — Discovering Benchmark Brown Dwarfs Through Citizen Science. PI Aaron Meisner, NSF’s NOIRLab. Search for planet-like objects called brown dwarfs that orbit nearby stars.
  • Mobile Toolkits to Enable Transient Follow-up Observations by Amateur Astronomers. PI Michael Coughlin, University of Minnesota. Use your own telescope to observe supernovae, kilonovae and other massive explosions.

Planetary Science Division

  • A Citizen Scientist Approach to High Resolution Geologic Mapping of Intracrater Impact Melt Deposits as an input to Numerical Models, PI Kirby Runyon, Planetary Science Institute. Help map lunar craters so we can better understand how meteor impacts sculpt the moon’s surface.
  • Identifying Active Asteroids in Public Datasets, PI Chad Trujillo, Northern Arizona University, Search for icy, comet-like bodies hiding in the asteroid belt using new data from the Canada-France-Hawaii telescope. 

Heliophysics Division

  • Enabling Magnetopause Observations With Informal Researchers (EMPOWR). PI Mo Wenil, Johns Hopkins University. Investigate plasma layers high above the Earth using data from NASA’s Magnetospheric Multiscale (MMS) mission and the Zooniverse platform.
  • High-resolution Ionospheric Imaging using Dual-Frequency Smartphones. PI Josh Semeter, Boston University. Study the upper atmosphere using cell phone signals.
  • Large Scale Structures Originating from the Sun (LASSOS) multi-point catalog: A citizen project connecting operations to research.  PI Cecelia Mac Cormack, Catholic University of America. Help build a catalog of structures on the Sun.
  • Comet Identification and Image Annotation Modernization for the Sungrazer Citizen Science Project. PI Oliver Gerland. Search for comets in data from ESA and NASA’s Solar and Heliospheric Observatory (SOHO) mission using new web tools.

Heliophysics Citizen Science Investigations (HCSI)

The HCSI program supports medium-scale citizen science projects in the Heliophysics Division of NASA’s Science Mission Directorate.  Six investigations were recently selected through this program:

  • Investigation of green afterglow observed above sprite and gigantic jet tops based on Spritacular project database, PI Burcu Kosar. Photograph electric phenomena above storm clouds to help us understand a newly discovered green glow and learn about atmospheric chemistry.
  • Machine Learning competition for Solar Wind prediction in preparation of solar maximum. PI Enrico Camporeale, University of Colorado, Boulder. Take part in a competition to predict the speed of the solar wind using machine learning.
  • A HamSCI investigation of the bottomside ionosphere during the 2023 annular and 2024 total solar eclipses. PI Gareth Perry, New Jersey Institute of Technology. Use Ham Radio data to investigate the effects of solar eclipses on the ionosphere.
  • Dynamic footprint in mid-latitude mesospheric clouds. PI Chihiko Cullens,  University of Colorado, Boulder. Collect and analyze data on noctilucent clouds, rare high-altitude clouds that shine at night.
  • Monitoring Solar Activity During Solar Cycle 25 with the GAVRT Solar Patrol Science and Education Program. PI Marin Anderson, Jet Propulsion Laboratory. Track solar activity during the period leading up to and including solar maximum.
  • What is the total energy input to the heliosphere from solar jets? PI Nour Rawafi, The Johns Hopkins University Applied Physics Laboratory. Identify solar jets in images from the Solar Dynamics Observatory

Citizen Science for Earth Systems Program (CSESP)  

CSESP opportunities focus on developing and implementing projects that harness contributions from members of the general public to advance our understanding of Earth as a system. Proposals for the 2024 request were required to demonstrate a clear link between citizen science and NASA observation systems to advance the agency’s Earth science mission. Nine projects received funding.

  • Engaging Citizen Scientists for Inclusive Earth Systems Monitoring, PI Duan Biggs, Northern Arizona University. Measure trees in tropical regions south of the equator with the GLOBE Observer App to improve models of vegetation structure and biomass models from NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission.
  • Integrating Remote Sensing and Citizen Science to Support Conservation of Woodland Vernal Pools, PI Laura Bourgeau-Chavez, Michigan Technological University. Map and monitor shallow, seasonal wetlands in Michigan, Wisconsin and New York to better understand these key habitats of amphibians and other invertebrates.
  • Citizen-Enabled Measurement of PM2.5 and Black Carbon: Addressing Local Inequities and Validating PM Composition from MAIA, Albert Presto/Carnegie Mellon University. Deploy sensors to measure sources of fine airborne particle pollution filling gaps in data from NASA’s Multi-Angle Imager for Aerosols (MAIA) mission.
  • Expanding Citizen Science Hail Observations for Validation of NASA Satellite Algorithms and Understanding of Hail Melt, PI Russ Schumacher, Colorado State University. Measure the sizes and shapes of hailstones, starting in the southeastern United States, using photographs and special pads to help us understand microwave satellite data. 
  • X-Snow: A Citizen-Science Proposal for Snow in the New York Area, PI, Marco Tedesco, Columbia University. Measure snow in the Catskill and Adirondacks regions of New York to help improve NASA’s models of snow depth and water content.
  • Coupling Citizen Science and Remote Sensing Observations to Assess the Impacts of Icebergs on Coastal Arctic Ecosystems, PI, Maria Vernet, University of California, San Diego. Measure phytoplankton samples in polar regions to understand how icebergs and their meltwater affect phytoplankton concentration and biodiversity. 
  • Forecasting Mosquito-Borne Disease Risk in a Changing Climate: Integrating GLOBE Citizen Science and NASA Earth System Modeling, PI Di Yang, University of Florida, Gainesville. Using data on mosquitoes from the GLOBE Observer App to predict future changes in mosquito-borne disease risk.
  • Ozone Measurements from General Aviation: Supporting TEMPO Satellite Validation and Addressing Air Quality Issues in California’s San Joaquin Valley with Citizen Science, PI Emma Yates, NASA Ames Research Center. Deploy air-quality sensors around Bakersfield, California and compare the data to measurements from NASA’s Tropospheric Emissions Monitoring of Pollution instrument (TEMPO).
  • Under the Canopy: Capturing the Role of Understory Phenology on Animal Communities Using Citizen Science, PI Benjamin Zuckerberg, University of Wisconsin, Madison. Measure snow depth, temperature, and sound in forest understories to improve satellite-based models of vegetation and snow cover for better modeling of wildlife communities. 

For more information on citizen science awards from previous years, see articles from: 

For more information on NASA’s citizen science programs, visit https://science.nasa.gov/citizenscience.

Share

Details

Last Updated
Jan 13, 2025

Related Terms

First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference

10 January 2025 at 17:11

2 min read

First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference

The NASA Science Activation Program’s NASA’s Neurodiversity Network (N3) project sponsors a summer internship program for high school students, in which learners on the autism spectrum are matched with NASA Subject Matter Experts. N3 intern Lillian Hall and mentor Dr. Juan Carlos Martinez Oliveros presented Lilly’s summer research project on December 9 at the 2024 American Geophysical Union conference in Washington, D.C. Their poster, entitled “Eclipse Megamovie: Image Processing”, represents the first time an N3 intern has co-authored a presentation at the prestigious AGU conference.

The NASA Citizen Science project, Eclipse Megamovie, is leveraging the power of citizen science to construct a high-resolution time-lapse of the Sun’s corona during the April 8, 2024 total solar eclipse. By coordinating the work of hundreds of participants along the path of totality, a substantial dataset of images was obtained. The goal of the project is to unveil dynamic transformations in the Sun’s atmosphere that are only visible during a total solar eclipse.

To process the vast quantity of imaging data collected, Lilly assisted Dr. Martinez Oliveros and other researchers in implementing a robust pipeline involving image calibration, registration, and co-location. Image registration techniques aligned the solar features across different frames, compensating for Earth’s rotation and camera movement. Finally, they used imaging techniques to enhance the signal-to-noise ratio, revealing subtle coronal structures and possible dynamics. This comprehensive data processing methodology has enabled the extraction of meaningful scientific information from the Eclipse Megamovie dataset.

Here’s what Lilly had to say: “Working with N3 has given me a chance to use my neurodiverse perspective to make an impact on NASA research. Through the processes of my project and the opportunity to share it at the American Geophysical Union conference, I am so grateful to have found my spot in the planetary science field I dream to continue researching in the future.”

Learn more about NASA Citizen Science and how you can participate (participation does not require citizenship in any particular country): https://science.nasa.gov/citizen-science/

The N3 project is supported by NASA under cooperative agreement award number 80NSSC21M0004 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

https://www.agu.org/annual-meeting/schedule

Lilly Hall stands in front of her Eclipse Megamovie Image Processing poster.
Lilly Hall with her Eclipse Megamovie Image Processing poster.
Kristen Hall

Share

Details

Last Updated
Jan 10, 2025
Editor
NASA Science Editorial Team
❌
❌