Normal view

Before yesterdayMain stream

NASA Tests in Simulated Lunar Gravity to Prep Payloads for Moon

4 February 2025 at 15:04

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Launch of Blue Origins New Shepard suborbital rocket system.
Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.
Blue Origin

The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.

The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.

“Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”

NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.

“An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”

Watch highlights from the Feb. 4, 2025 lunar gravity flight test.
Blue Origin

One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.

The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.

Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.

By Nancy Pekar, NASA’s Flight Opportunities program

NIAC 2025 Selections

10 January 2025 at 13:39

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions.
A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions.
NASA/Left to Right: Saurabh Vilekar, Marco Quadrelli, Selim Shahriar, Gyula Greschik, Martin Bermudez, Ryan Weed, Ben Hockman, Robert Hinshaw, Christine Gregg, Ryan Benson, Michael Hecht

Phase I

Phillip Ansell
Hydrogen Hybrid Power for Aviation Sustainable Systems (Hy2PASS)
University of Illinois
Urbana, IL 61801-2957
2025 Phase I

Ryan Benson
Construction Assembly Destination
ThinkOrbital Inc.
Boulder, CO 80303-0001
2025 Phase I

Martin Bermudez
Lunar Glass Structure (LUNGS): Enabling Construction of Monolithic Habitats in Low-Gravity Environment
Skyeports LLC
Sacramento, CA 95811-0001
2025 Phase I

Christine Gregg
Dynamically Stable Large Space Structures via Architected Metamaterials
NASA Ames Research Center
Moffett Field, CA 94035
2025 Phase I

Gyulaz Greschik
The Ribbon: Structure Free Sail for Solar Polar Observation
Tentguild Engineering Co
Boulder, CO 80305-0001
2025 Phase I

Michael Hecht
Exploring Venus with Electrolysis (EVE)
Massachusetts Institute of Technology
Cambridge, MA 02139-0001
2025 Phase I

Robert Hinshaw
MitoMars: Targeted Mitochondria Replacement Therapy to Boost Deep Space Endurance
NASA Ames Research Center
Moffett Field, CA 94035-0001
2025 Phase I

Ben Hockman
TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling
NASA Jet Propulsion Laboratory
Pasadena, CA 91109-8001
2025 Phase I

John Mather
Inflatable Starshade for Earthlike Exoplanets
NASA Goddard Space Flight Center
Greenbelt, MD 20771-2400
2025 Phase I

Marco Quadrelli
PULSAR: Planetary pULSe-tAkeR
NASA Jet Propulsion Laboratory
Pasadena, CA 91109-0001
2025 Phase I

Selim Shahriar
SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity
Northwestern University, Evanston
Evanston, IL 60208-0001
2025 Phase I

Saurabh Vilekar
Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply
Precision Combustion
North Haven, CT 06473-3106
2025 Phase I

Kimberly Weaver
Beholding Black Hole Power with the Accretion Explorer Interferometer
NASA Goddard Space Flight Center
Greenbelt, MD 20771-0001
2025 Phase I

Ryan Weed
Fusion-Enabled Comprehensive Exploration of the Heliosphere
Helicity Space LLC
Pasadena, CA 91107-0001
2025 Phase I

Justin Yim
LEAP – Legged Exploration Across the Plume
University of Illinois
Urbana, IL 61801-0001
2025 Phase I

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

LEAP – Legged Exploration Across the Plume

10 January 2025 at 13:38

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of LEAP – Legged Exploration Across the Plume.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of LEAP – Legged Exploration Across the Plume.
NASA/Justin Yim

Justin Yim
University of Illinois

We propose Legged Exploration Across the Plume (LEAP), based on the Salto jumping robot as a novel multi-jet robotic sampling concept for Enceladus to be deployed from Enceladus Orbilander. If successful, LEAP will enable collection of pristine, ocean-derived material directly from Enceladus’s jets and measurement of particle properties across multiple jets by traveling from one to another. In low gravity, existing jump performance would be sufficient to leap 90 m vertically or 170 m horizontally in Enceladus’s gravity allowing traversal of jets and collection of direct measurements otherwise not accessible to Orbilander. These measurements could be crucial for investigating the physics of how the plume is connected to the ocean.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

Fusion-Enabled Comprehensive Exploration of the Heliosphere

10 January 2025 at 13:38

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Fusion-Enabled Comprehensive Exploration of the Heliosphere concept
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Fusion-Enabled Comprehensive Exploration of the Heliosphere concept
NASA/Ryan Weed

Ryan Weed
Helicity Space LLC

This proposal aims to revolutionize space exploration by developing a constellation of spacecraft powered by the Helicity Drive, a compact and scalable fusion propulsion system. This innovative technology will enable rapid, multi-directional exploration of the heliosphere and beyond, providing unprecedented insights into the Sun’s vast influence on our solar system and its interaction with interstellar space. We will conduct a comprehensive feasibility study, including advanced modeling and experimental validation of the Helicity Drive’s thrust and power generation capabilities. We will also design a realistic spacecraft architecture that integrates the propulsion system with scientific instruments capable of measuring key properties of the heliosphere and interstellar medium. Each spacecraft will carry a suite of state-of-the-art scientific instruments to comprehensively measure plasma properties, magnetic fields, dust, and energetic particles, providing in-situ data from regions never before explored. This will address critical scientific questions, such as the true shape of the heliosphere and heliopause, the origin of anomalous cosmic rays, and the mechanisms driving turbulence in the heliospheric tail. Finally, we will develop a mission concept of operations that leverages the Helicity Drive’s variable specific impulse and high delta-V capability to speed-up and slow-down in order to capture key scientific data in different heliosphere regions, and the local interstellar medium along 6 different trajectories, maximizing scientific return. The successful implementation of this mission will not only revolutionize our understanding of the heliosphere and its implications for space radiation and habitability but also pave the way for future interstellar missions. By demonstrating the feasibility of fusion propulsion for deep-space exploration, including outer solar system probes and crewed missions to Mars, it will open new frontiers for scientific discovery and inspire future generations. The technological advancements and potential spinoffs resulting from this mission will also contribute significantly to the national economy.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

Beholding Black Hole Power with the Accretion Explorer Interferometer

10 January 2025 at 13:37

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Beholding Black Hole Power with the Accretion Explorer Interferometer concept.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Beholding Black Hole Power with the Accretion Explorer Interferometer concept.
NASA/Kimberly Weaver

Kimberly Weaver
NASA Goddard Space Flight Center

Some of the most enigmatic objects in the Universe are giant supermassive black holes (SMBH). Yet after 30 years of study, we don’t know precisely how these objects produce their power. This requires observations at X-ray wavelengths. The state-of-the-art for X-ray images is Chandra (~0.5-1 arcsecond resolution) but this is insufficient to image regions near SMBH where the most energetic behavior occurs. The Accretion Explorer (AE) is a mission architecture that will shatter new ground by creating X-ray images at scientifically crucial energies of 0.7-1.2 keV, 1.5-2.5 keV, 6-7 keV, up to 6 orders of magnitude better than Chandra, and will offer imaging at 4-5 orders of magnitude better than JWST (IR) and HST(optical/UV). The specific X-ray energy bands we are proposing to cover contain vital X-ray line signatures that can distinguish between SMBH activity and stellar processes. The AE NIAC concept would be a game changer for NASA and astrophysics. X-ray interferometry will challenge and change the conversation around future mission possibilities for NASA’s flagships. It will also influence the Astrophysics 2030 Decadal Survey and will significantly contribute to our scientific knowledge base in astrophysics and other fields. AE has tremendous potential to generate enthusiasm for future missions and the potential to build advocacy to support it within NASA, society, and the aerospace community.

Alternative approaches to ultra high-resolution X-ray imaging technology are not currently being funded. Our study will focus on a large free-flying X-ray interferometer. We will design a multiple spacecraft system that provides the architecture to align individual mirror pair baseline groupings provided by individual collector spacecraft, with the pointing precision to achieve micro-arcsecond resolution. Our study will assess the required pointing stability and determine optimal ways to nest and mount the collecting mirror flats within mirror modules. We will assess the required size for the detector array(s) to accommodate the wavelength coverage for detecting fringes, study how images will be created from fringes, and produce a simulated image from a design with accompanying optical element tolerance tables. We will document alternative approaches, how new factors substantially differentiate AE from prior efforts for X-ray interferometry, and identify technical hurdles.

As a result of performing this study, there are notable engineering benefits that can contribute to space missions, even if the concept is shown to be infeasible. These include establishing how small baseline interferometers can be flown with less risk in terms of spacing and tethering mirror modules, studies of very high levels of pointing precision for space-based interferometers, and extreme stability on target. Producing a simulated image from this design with accompanying tolerance tables can inform other space-based interferometry designs.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply

10 January 2025 at 13:36

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply concept.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply concept.
NASA/Saurabh Vilekar

Saurabh Vilekar
Precision Combustion

Precision Combustion, Inc. (PCI) proposes to develop a uniquely compact, lightweight, low-power, and durable Microlith® Thermo-Photo-Catalytic (TPC) Reactor for crewed Mars transit spacecraft O2 supply. As crewed space exploration mission destinations move from low Earth orbit to sustained lunar surface habitation toward Mars exploration, the need becomes more intense to supplant heritage physico-chemical unit operations employed for crewed spacecraft cabin CO2 removal, CO2 reduction, and O2 supply. The primary approach to date has been toward incremental improvement of the heritage, energy intensive process technologies used aboard the International Space Station (ISS), particularly for water electrolysis-based O2 generation. A major breakthrough is necessary to depose these energy intensive process technologies either partly or completely. This is achievable by considering the recent advances in photocatalysis. Applications are emerging for converting CO2 to useful commodity products and generating H2 from atmospheric water vapor. Considering these developments, a low power thermo-photo-catalytic process to replace the heritage high-power water electrolysis process is proposed for application to a Mars transit vehicle life support system (LSS) functional architecture. A key component in realizing this breakthrough is utilizing a catalyst substrate such as Microlith that affords high surface area and promotes mass transport to the catalyst surface. The proposed TPC oxygenator is expected to operate passively to continually renew the O2 content of the cabin atmosphere. The targeted mission for the proposed TPC oxygenator technology deployment is a 2039 Long Stay, Earth-Mars-Earth mission opportunity. This mission as defined by the Moon to Mars (M2M) 2024 review consists of 337.9 days outbound, 348.5 days in Mars vicinity, and 295.8 days return for a total 982.2-day mission. The proposed Microlith oxygenator technology, if successful, is envisioned to replace the OGA technology in the LSS process architecture with significant weight and power savings. In Phase I, we will demonstrate technical feasibility of Microlith TPC for O2 generation, interface requirements, and integration trade space and a clear path towards a prototype demonstration in Phase II will also be described in the final report.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity

10 January 2025 at 13:36

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum Gravity
NASA/Selim Shahriar

Selim Shahriar
Northwestern University, Evanston

Progress in physics has largely been driven by the development and verification of new theories that unify different fundamental forces of nature. For example, Maxwell revolutionized physics with his unified theory of electricity and magnetism, and the Standard Model of particle physics provides a consistent description of all fundamental forces (electromagnetic, strong, and weak) except for gravity. The major barrier to completing the quest for unification is that General Relativity (GR), the current theory of gravity, cannot be reconciled with QM. Theories of Quantum Gravity (TQG), which are yet untested, prescribe modifications of both GR and QM in a manner that makes them consistent with each other. Tests of TQG represent arguably the greatest challenge facing our understanding of the Universe. The most promising way to test TQG is to search for violation of the Equivalence Principle (EP), a fundamental tenet of GR which states that all objects experience the same acceleration in a gravitational field. Violation of EP is characterized by a nonzero Eotvos parameter, Eta, defined as the ratio of the relative acceleration to the mean acceleration experienced by two objects with different inertial masses in a gravitational field. EP violations at the level of Eta < 10^(-18) arise in many versions of TQG (e.g., string theory). The most precise test of the EP to date has been carried out under the space-borne MICROSCOPE experiment employing classical accelerometers, constraining the value of Eta to <1.5×10^(-15). We propose to investigate the use of a radically new method that leverages quantum entanglement to test the EP with extreme precision, at the level of Eta ~ 10^(-20), using a space-borne platform. This method is described in a recent paper by us (PRD 108, 024011, ’23). It makes use of simultaneous Schroedinger Cat (SC) state atom interferometers (AIs) with two isotopes of Rb. Consisting of N=10^6 atoms, the SC state, which is a maximally entangled quantum state generated via spin-squeezing of cold atoms in an optical cavity, acts as a single particle, in a superposition of two collective states, enhancing the sensitivity by a factor of ~root(N)=10^3. Such large-N SC states are difficult to create and have not been observed yet, let alone leveraged for precision metrology. In another recent paper, we described a novel protocol, namely the generalized echo squeezing protocol (GESP), to overcome the challenges of creating such a state (PRA 107, 032610, ’23). We will demonstrate the functionality of this method in a testbed to enable a follow-on space-borne mission capable of testing the EP at the level of Eta ~ 10^(-20). If EP violation is observed, the version of TQG that agrees most closely with the result would form the foundation for a complete theory governing the universe, including its birth: the Big Bang. A null result would force physicists to conceive an entirely new approach to addressing the irreconcilability of GR and QM, fundamentally altering the course of theoretical physics. Either outcome would represent one of the greatest developments in our quest for understanding nature. The SC-state AI (SCAI), also holds the promise of revolutionary improvements in the precision of gravitational cartography and inertial navigation, when configured for simultaneous accelerometry and rotation sensing. The sensitivity of such a sensor, for one second averaging time, would be ~0.9 femto-g for accelerometry, and ~0.5 pico-degree/hour for rotation sensing. This would represent an improvement by a factor of ~10^5 over the best conventional accelerometer, and a factor of ~10^4 over the best conventional gyroscopes. As such, the SCAI would find widespread usage in defense as well as non-defense sectors, including deep-space exploration, for inertial navigation. A space-borne SCAI would be able to carry out gravitational cartography with a resolution far greater than that achieved using the GRACE-FO satellites.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

PULSAR: Planetary pULSe-tAkeR

10 January 2025 at 13:34

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the PULSAR: Planetary pULSe-tAkeR concept.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of PULSAR: Planetary pULSe-tAkeR concept.
NASA/Marco Quadrelli

Marco Quadrelli
NASA Jet Propulsion Laboratory

There is a strong coupling mechanism between the lithosphere, ionosphere, magnetosphere, atmosphere, and the plasmasphere of many planetary bodies. For example, the ionosphere has been shown to respond to space weather events induced by Solar activity, as well as to atmospheric events, and events in the surface and interior of a planet. PULSAR (Planetary pULSe-tAkeR) is a stable spacecraft constellation that enables large and reconfigurable detector baselines to sense a wide range of frequencies in this coupled domain, and distributed spatial and temporal measurements on a global scale, leading to new planetary science measurements. Like a doctor taking vitals and monitoring the health state of a patient, PULSAR literally “takes the pulse of the planet”.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

Inflatable Starshade for Earthlike Exoplanets

10 January 2025 at 13:34

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Inflatable Starshade for Earthlike Exoplanets concept.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Inflatable Starshade for Earthlike Exoplanets concept.
NASA/John Mather

John Mather
NASA Goddard Space Flight Center

We will design the first family of ISEE’s (Inflatable Starshade for Earthlike Exoplanets) with sizes from 35 to 100 m diameter. A starshade would enable any telescope to observe exoplanets, a top priority for astronomy worldwide. Compared with other starshade concepts, we aim for a lower mass, cost and complexity, while still providing high performance and science yield (>100 targets). Our starshades would be compatible with the 6 m diameter Habitable Worlds Observatory (HWO) now being planned, as well as the world’s largest telescope, the 39 m diameter European Extremely Large Telescope now being built in Chile, working as part of the HOEE, (Hybrid Observatory for Earthlike Exoplanets), and other future telescopes. We need to observe oxygen at visible wavelengths and ozone at UV.

An ISEE, positioned between a target star and the telescope, would block the starlight without blocking the exoplanets. Starshades have perfect optical efficiency, they work with any telescope, and they can block the starlight much better than the requirement, for a star >1010 times brighter than the target.

The competing technology uses a nearly perfect and perfectly stable space telescope like HWO, with an internal coronagraph, to keep the starlight away from the image of the planet. Coronagraphs have the key advantages that they are compact, testable, and have instant availability. However, tested coronagraphs have not yet met the contrast requirement. Moreover, there is no possibility of an ultraviolet coronagraph. If the extreme picometer stability and optical perfection requirements on HWO and its coronagraph could be relaxed by using it with a starshade, then HWO itself could be built at much lower cost and risk. If UV observations of exoplanets are essential, then a 35 m starshade with HWO is the only possible solution.

The HWO will be NASA’s next great observatory, and it will include a high performance coronagraph to observe exoplanets. This choice changed the landscape for the competing starshade technology. A starshade mission could still become necessary if: A. The HWO and its coronagraph cannot be built and tested as required; B. The HWO must observe exoplanets at UV wavelengths, or a 6 m HWO is not large enough to observe the desired targets; C. HWO does not achieve adequate performance after launch, and planned servicing and instrument replacement cannot be implemented; D. HWO observations show us that interesting exoplanets are rare, distant, or are hidden by thick dust clouds around the host star, or cannot be fully characterized by an upgraded HWO; or E. HWO observations show that the next step requires UV data, or a much larger telescope, beyond the capability of conceivable HWO coronagraph upgrades.

An inflatable starshade would overcome the main obstacle to starshades: their mechanical design. Starshades have never been flown, they have strict shape and edge requirements, and they must be propelled and precisely positioned. Prior designs based on discrete elements can be scaled up to the size required for HWO (35-60 m) and HOEE (100 m), but they are massive and hard to test leading to high cost and risk. Our mass budget aims for 250 kg for the 35 m HWO case, 650 kg for the 60 m case and 1700 kg for the 100 m HOEE case.We will extend our ideas and produce detailed designs and finite element models, suitable for strength, stiffness, stability, and thermal analysis. We will develop small-scale laboratory test equipment and verify solutions to issues like bonding large sheets of high-strength material into inflatable systems. Deliverable items would include mass/power budgets, strength and stiffness, and lab tests of critical items. We will update mission concepts for HWO and HOEE based on the starshade parameters.
Depending on progress with the HWO mission, starshades could be required to complete our knowledge of exoplanets. An inflatable starshade could make them possible.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling

10 January 2025 at 13:33

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling concept.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling concept.
NASA/Ben Hockman

Ben Hockman
NASA Jet Propulsion Laboratory

A basketball-sized towbody containing a camera, atmospheric sampling instruments, and support hardware is suspended on a multi-kilometer tether from a high-altitude balloon in the Venusian atmosphere, allowing it to peer beneath the dense cloud layer and image the surface at high resolution. The towbody harvests energy from the differential wind shear via an onboard wind turbine in order to power onboard instruments and active cooling system. Aerodynamic surfaces interacting with the relative wind shears of ~10 m/s allow the towbody to maintain stable pointing for imaging. This Phase I study will focus on four key feasibility aspects of the towbody system: (1) the tether system, including tether design, deployment system, and drag due to atmospheric wind shear, (2) towbody attitude stability, including its aerodynamic design and vibration suppression, (3) the power and thermal system for surviving the harsh Venusian atmosphere, and (4) the mission architecture and systems engineering aspects, particularly communications, towbody deployment, gondola interfaces, and the concept of operations. This “Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling (TOBIAS)” would transform our understanding of the nature and evolution of Venus by enabling high resolution and spatial coverage nighttime IR imaging of surface geology, including active and past volcanism.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall
❌
❌