Normal view

Before yesterdayMain stream

Five Facts About NASA’s Moon Bound Technology

24 February 2025 at 17:26
4 Min Read

Five Facts About NASA’s Moon Bound Technology

A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes.
Credits: NASA/Scientific Visualization Studio

NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface. 

As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication.  

The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth.

Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX
Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX

Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen!  

1. Lunar South Pole Exploration 

IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter.  

Illustration of mons-mouton
An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.
Credit: NASA/Scientific Visualization Studio

2. New Technology Demonstrations 

NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface.  

Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies.   

The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.
Credit: NASA/Advanced Concepts Lab

3. Mobile Robots

Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. 

The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 

Artist rendering of the Intuitive Machines Micro Nova Hopper.
Credit: Intuitive Machines

4. Lunar Surface Communication

The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 

Artist rendering of Nokia's Lunar Surface Communication System (LSCS), a rover like robot with two white antenna rods.
Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface.
Credit: Intuitive Machines

5. Working Together

NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative.  

NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation.  
NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2.  

Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog.  

Engineers inspect the TRIDENT drill in a clean room.
A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.
Credit: NASA/Robert Markowitz
Artist rendering of Intuitive Machines' Athena lunar lander on the Moon
Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon.
Credit: Intuitive Machines

Artist conception: Earth emerges from behind Mons Mouton on the horizon.
Credit: NASA/Scientific Visualization Studio

NASA Tests in Simulated Lunar Gravity to Prep Payloads for Moon

4 February 2025 at 15:04

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Launch of Blue Origins New Shepard suborbital rocket system.
Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.
Blue Origin

The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.

The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.

“Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”

NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.

“An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”

Watch highlights from the Feb. 4, 2025 lunar gravity flight test.
Blue Origin

One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.

The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.

Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.

By Nancy Pekar, NASA’s Flight Opportunities program

NASA Demonstrates Software ‘Brains’ Shared Across Satellite Swarms  

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two men sit conversing in front of a dual-screen monitor and laptop. The screens display spacecraft forming a network around the Moon.
Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon.
NASA/Brandon Torres Navarrete

Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input. 

NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives. 

“The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”  

What Are Distributed Space Missions? 

Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.  

Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.  

Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures. 

The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit. 

Experimenting With DSA in Low Earth Orbit

The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.  

“We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”  

The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. 

During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.   

Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations. 

“Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.

A man stands in front of a computer server and gestures towards the racks and cables.
Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions.
NASA/Brandon Torres Navarrete

Scaling Up Swarms in Virtual Lunar Orbit  

The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.   

The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.  

The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity. 

Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible. 

NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project. 

NASA’s Mini Rover Team Is Packed for Lunar Journey

11 February 2025 at 14:38

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A team at JPL packed up three small Moon rovers, delivering them in February to the facility where they’ll be attached to a commercial lunar lander in preparation for launch. The rovers are part of a project called CADRE that could pave the way for potential future multirobot missions. NASA/JPL-Caltech

A trio of suitcase-size rovers and their base station have been carefully wrapped up and shipped off to join the lander that will deliver them to the Moon’s surface.

Three small NASA rovers that will explore the lunar surface as a team have been packed up and shipped from the agency’s Jet Propulsion Laboratory in Southern California, marking completion of the first leg of the robots’ journey to the Moon.

The rovers are part of a technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration), which aims to show that a group of robots can collaborate to gather data without receiving direct commands from mission controllers on Earth. They’ll use their cameras and ground-penetrating radars to send back imagery of the lunar surface and subsurface while testing out the novel software that enables them to work together autonomously.

The CADRE rovers will launch to the Moon aboard IM-3, Intuitive Machines’ third lunar delivery, which has a mission window that extends into early 2026, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Once installed on Intuitive Machines’ Nova-C lander, they’ll head to the Reiner Gamma region on the western edge of the Moon’s near side, where the solar-powered, suitcase-size rovers will spend the daylight hours of a lunar day (the equivalent of about 14 days on Earth) carrying out experiments. The success of CADRE could pave the way for potential future missions with teams of autonomous robots supporting astronauts and spreading out to take simultaneous, distributed scientific measurements.

Members of a JPL team working on NASA’s CADRE
Members of a JPL team working on NASA’s CADRE technology demonstration use temporary red handles to move one of the project’s small Moon rovers to prepare it for transport to Intuitive Machines’ Houston facility, where it will be attached to the company’s third lunar lander.
NASA/JPL-Caltech

Construction of the CADRE hardware — along with a battery of rigorous tests to prove readiness for the journey through space — was completed in February 2024.

To get prepared for shipment to Intuitive Machines’ Houston facility, each rover was attached to its deployer system, which will lower it via tether from the lander onto the dusty lunar surface. Engineers flipped each rover-deployer pair over and attached it to an aluminum plate for safe transit. The rovers were then sealed in protective metal-frame enclosures that were fitted snuggly into metal shipping containers and loaded onto a truck. The hardware arrived safely on Sunday, Feb. 9.

“Our small team worked incredibly hard constructing these robots and putting them to the test, and we have been eagerly waiting for the moment where we finally see them on their way,” said Coleman Richdale, the team’s assembly, test, and launch operations lead at JPL. “We are all genuinely thrilled to be taking this next step in our journey to the Moon, and we can’t wait to see the lunar surface through CADRE’s eyes.”

The rovers, the base station, and a camera system that will monitor CADRE experiments on the Moon will be integrated with the lander — as will several other NASA payloads — in preparation for the launch of the IM-3 mission.

More About CADRE

A division of Caltech in Pasadena, California, JPL manages CADRE for the Game Changing Development program within NASA’s Space Technology Mission Directorate. The technology demonstration was selected under the agency’s Lunar Surface Innovation Initiative, which was established to expedite the development of technologies for sustained presence on the lunar surface. NASA’s Science Mission Directorate manages the CLPS initiative. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena facility. Clemson University in South Carolina contributed research in support of the project.

For more about CADRE, go to:

https://go.nasa.gov/cadre

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2025-018

NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!

24 January 2025 at 11:24
4 Min Read

NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!

Firefly Aerospace's Blue Ghost Mission 1 spacecraft in the darkness of space captures a first image from the top deck of its lunar lander.
The first image from space of Firefly's Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon.
Credits: Firefly Aerospace

NASA Space Technology has big travel plans for 2025, starting with a trip to the near side of the Moon!

Among ten groundbreaking NASA science and technology demonstrations, two technologies are on a ride to survey lunar regolith – also known as “Moon dust” – to better understand surface interactions with incoming lander spacecraft and payloads conducting experiments on the surface. These dust demonstrations and the data they’re designed to collect will help support future lunar missions.  

Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2. 

The first image from space of Firefly’s Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon. The top deck of the lander is visible here with the X-band antenna and NASA’s Lunar Environment heliospheric X-ray Imager (LEXI) payload.
The first image from space of Firefly’s Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon.
Firefly Aerospace

NASA Space Technology on Blue Ghost Mission 1

NASA’s Electrodynamic Dust Shield (EDS) will lift, transport, and remove particles using electric fields to repel and prevent hazardous lunar dust accumulation on surfaces. The agency’s Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) technology will use stereo imaging to capture the impact of rocket plumes on lunar regolith as the lander descends to the Moon’s surface, returning high-resolution images that will help in creating models to predict regolith erosion – an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. 

The EDS and SCALPSS technologies will be delivered to the Moon on Firefly’s first Blue Ghost mission, named Ghost Riders in the Sky, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Its landing target is a 300-mile-wide basin located on the Moon’s near side, called Mare Crisium – a large, dark, basaltic plain that filled an ancient asteroid impact. First-of-their-kind experiments will deploy after landing to gather important data in a broad spectrum of areas including geophysical characteristics, global navigation, radiation tolerant computing, and the behavior of lunar regolith.

Replicating the Moon’s harsh environment on Earth is a significant challenge because of extreme temperatures, low gravity, radiation, and dusty surface. The CLPS initiative provides unprecedented access to the lunar surface, allowing us to demonstrate technologies in the exact conditions they were designed for. Missions like Blue Ghost Mission 1 are a true game changer for NASA technology advancement and demonstration.”

Michael Johansen

Michael Johansen

Flight Demonstrations Lead for NASA’s Game Changing Development program

Dust particles scatter during an experiment for the Electrodynamic Dust Shield for Dust Mitigation.
Dust particles scatter during an experiment for the Electrodynamic Dust Shield in a laboratory at NASA’s Kennedy Space Center in Florida.
NASA
lunar surface camera technology integrated on a lunar lander
NASA’s Stereo Camera for Lunar Plume-Surface Studies technology integrated on Firefly’s Blue Ghost lander.
Firefly Aerospace
A complex wrinkle ridge in Mare Crisium at low Sun, seen in an image captured by the Lunar Reconaissance Orbiter Camera (illumination is from the right). Image width is 700 m, north is up. Boulders occupy the tops of mounds on the west ridge, and the central depression is more heavily cratered than the ridge.
A complex wrinkle ridge in Mare Crisium at low Sun, seen in an image captured by the Lunar Reconnaissance Orbiter Camera.
NASA/GSFC/Arizona State University

Understanding regolith

The Moon’s dusty environment was one of the greatest challenges astronauts faced during Apollo Moon missions, posing hazards to lunar surface systems, space suits, habitats, and instrumentation. What was learned from those early missions – and from thousands of experiments conducted on Earth and in space since – is that successful surface missions require the ability to eliminate dust from all kinds of systems. Lunar landings, for example, cause lunar dust to disperse in all directions and collect on everything that lands there with it. This is one of the reasons such technologies are important to understand. The SCALPSS technology will study the dispersion of lunar dust, while EDS will demonstrate a solution to mitigate it. 

Getting this new data on lunar regolith with be pivotal for our understanding of the lunar surface. We’ve long known that lunar dust is a huge challenge. The Lunar Surface Innovation Initiative has enabled us to initiate lunar dust mitigation efforts across the agency, working with industry and international partners. The lunar science, exploration, and technology communities are eager to have new quantitative data, and to prove laboratory experiments and develop technology solutions.”

Kristen John

Kristen John

Technical Integration Lead for NASA’s Lunar Surface Innovation Initiative (LSII)

[VIDEO] Dust on the lunar surface is a significant hazard for systems and astronauts living and working on the Moon. NASA space technologies are developing solutions to retire hurdles in this capability area.
NASA Space Technology

Dust mitigation technology has come a long way, but we still have a lot to learn to develop surface systems and infrastructure for more complex missions. LSII is actively engaged in this effort, working with the lunar community across sectors to expand knowledge and design new approaches for future technologies. Working alongside the Lunar Surface Innovation Consortium, LSII has a unique opportunity to take a holistic look at dust’s role in the development of surface infrastructure with other key capability areas including in-situ resource utilization, surface power, and surviving the lunar night.  

Learning from the the Moon benefits Mars science and exploration

Capabilities for minimizing dust interaction are as important for future missions on Mars as it is for missions on the Moon. Like the Moon, Mars is also covered with regolith, also called Martian dust or Martian soil, but the properties are different than lunar regolith, both in shape and mineralogy. The challenges Mars rovers have encountered with Martian regolith have provided great insight into the challenges we will face during lunar surface missions. Learning is interwoven and beneficial to future missions whether hundreds of thousands of miles from Earth, on the Moon, or millions, on Mars.  

Black and white image of an astronaut sampling lunar dust on the surface of the Moon during the Apollo 17 mission.
Scientist-astronaut Harrison Schmitt, Apollo 17 lunar module pilot, uses an adjustable sampling scoop to retrieve lunar samples during the second Apollo 17 extravehicular activity (EVA).
NASA
Imprints in Mars dust from a rover's robotic arm
NASA’s Perseverance Mars rover snagged two samples of regolith – broken rock and dust – on Dec. 2 and 6, 2022. This set of images, taken by the rover’s left navigation camera, shows Perseverance’s robotic arm over the two holes left after the samples were collected.
NASA/JPL-Caltech

Learn more from a planetary scientist about how science factors into lunar dust mitigation technologies:

❌
❌