Normal view

Before yesterdayMain stream

NASA Prepares Gateway Lunar Space Station for Journey to Moon

25 February 2025 at 07:03
A side view of the Power and Propulsion Element for Gateway in a cleanroom at Maxar Space Systems in Palo Alto, California. The spacecraft is tilted at an angle, revealing a gold-colored tank housed inside the large cylindrical structure. The exterior is lined with wiring and connectors.  Technicians in cleanroom attire work below.
The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.
Maxar Space Systems

NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.

Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  

The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.

The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.

Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.

The Power and Propulsion Element of Gateway is shown being assembled inside a clean room at Maxar Space Systems in Palo Alto, California. The large cylindrical structure has numerous wires and components attached to its black exterior paneling. A reflective gold-colored fuel tank is seen inside the main clylinder. Engineers in cleanroom suits work around the spacecraft, inspecting and assembling its systems.
The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.
Maxar Space Systems
An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission.
NASA/Alberto Bertolin
Artist's rendering of the Gateway lunar space station in its initial stage, featuring the Habitation and Logistics Outpost (HALO) joined with the Power and Propulsion Element (PPE). PPE is depicted using its Solar Electric Propulsion (SEP) system, with blue plumes of ionized xenon gas streaming from the spacecraft. The Moon and Earth are visible in the background.
An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon.
NASA/Alberto Bertolin
Facebook logo
Instagram logo

NASA’s Advancements in Space Continue Generating Products on Earth  

12 February 2025 at 13:20
The cover of Spinoff 2025, NASA's annual publication that chronicles commercial products born from space technology, is a detailed view of the lunar surface captured by cameras on the Orion spacecraft on a close approach of the Moon during the Artemis I mission.
The cover of Spinoff 2025, NASA’s annual publication that chronicles commercial products born from space technology, is a detailed view of the lunar surface captured by cameras on the Orion spacecraft on a close approach of the Moon during the Artemis I mission.
Credit: NASA

The latest edition of NASA’s Spinoff publication, which highlights the successful transfer of agency technology to the commercial sector, is now available online.

For nearly 25 years, NASA has supported crew working in low Earth orbit to learn about the space environment and perform research to advance deep space exploration. Astronauts aboard the International Space Station have learned a wealth of lessons and tried out a host of new technologies. This work leads to ongoing innovations benefiting people on Earth that are featured in NASA’s annual publication.  

“The work we do in space has resulted in navigational technologies, lifesaving medical advancements, and enhanced software systems that continue to benefit our lives on Earth,” said Clayton Turner, associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington. “Technologies developed today don’t just make life on our home planet easier – they pave the way to a sustained presence on the Moon and future missions to Mars.” 

The Spinoff 2025 publication features more than 40 commercial infusions of NASA technologies including: 

  • A platform enabling commercial industry to perform science on the space station, including the growth of higher-quality human heart tissue, knee cartilage, and pharmaceutical crystals that can be grown on Earth to develop new medical treatments.  
  • An electrostatic sprayer technology to water plants without the help of gravity and now used in sanitation, agriculture, and food safety.  
  • “Antigravity” treadmills helping people with a variety of conditions run or walk for exercise, stemming from efforts to improve astronauts’ fitness in the weightlessness of space.  
  • Nutritional supplements originally intended to keep astronauts fit and mitigate the health hazards of a long stay in space.  

As NASA continues advancing technology and research in low Earth orbit to establish a sustained presence at the Moon, upcoming lunar missions are already spinning off technologies on Earth. For example, Spinoff 2025 features a company that invented technology for 3D printing buildings on the Moon that is now using it to print large structures on Earth. Another group of researchers studying how to grow lunar buildings from fungus is now selling specially grown mushrooms and plans to build homes on Earth using the same concept.  

Spinoffs produce innovative technologies with commercial applications for the benefit of all. Other highlights of Spinoff 2025 include quality control on assembly lines inspired by artificial intelligence developed to help rovers navigate Mars, innovations in origami based on math for lasers and optical computing, and companies that will help lead the way to hydrogen-based energy building on NASA’s foundation of using liquid hydrogen for rocket fuel.  

“I’ve learned it’s almost impossible to predict where space technology will find an application in the commercial market,” said Dan Lockney, Technology Transfer program executive at NASA Headquarters in Washington. “One thing I can say for sure, though, is NASA’s technology will continue to spin off, because it’s our goal to advance our missions and bolster the American economy.”  

This publication also features 20 technologies available for licensing with the potential for commercialization. Check out the “Spinoffs of Tomorrow” section to learn more.

Spinoff is part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. Tech Transfer is charged with finding broad, innovative applications for NASA-developed technology through partnerships and licensing agreements, ensuring agency investments benefit the nation and the world.  

To read the latest issue of Spinoff, visit: 

https://spinoff.nasa.gov

-end-

Jasmine Hopkins
Headquarters, Washington
321-432-4624
jasmine.s.hopkins@nasa.gov

NASA Tests in Simulated Lunar Gravity to Prep Payloads for Moon

4 February 2025 at 15:04

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Launch of Blue Origins New Shepard suborbital rocket system.
Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.
Blue Origin

The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.

The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.

“Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”

NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.

“An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”

Watch highlights from the Feb. 4, 2025 lunar gravity flight test.
Blue Origin

One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.

The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.

Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.

By Nancy Pekar, NASA’s Flight Opportunities program

Recognizing Employee Excellence

12 February 2025 at 07:06

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Glenn Employees Earn Presidential Early Career Awards for Scientists and Engineers

Two NASA Glenn Research Center employees were among 19 agency researchers recognized as recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE). 

Portrait of Dr. Lyndsey McMillon-Brown
Dr. Lyndsey McMillon-Brown
Credit: NASA 

Lyndsey McMillon-Brown was recognized for leadership in photovoltaic research, development, and demonstrations. She was the principal investigator for a Science Technology Mission Directorate-funded Early Career Initiative where she led the development of perovskite photovoltaics, which can be manufactured in space. The team achieved sun-to-electricity power conversion efficiencies of 18%. They tested the durability of the solar cells by flying them in low Earth orbit for 10 months on the Materials International Space Station Experiment platform.   

Portrait of Timothy M. Smith
Timothy M. Smith
Credit: NASA 

Timothy M. Smith was recognized for achievements in materials science research, specifically in high-temperature alloy innovation. Building upon his dissertation work, he designed a new high-temperature superalloy with radically improved high-temperature durability. Additionally, he helped develop a new manufacturing process that could produce new metal alloys strengthened by nano oxide particles. This led to the development of a revolutionary high- temperature alloy (GRX-810) designed specifically for additive manufacturing.  

The PECASE Award is the highest honor given by the U.S. government to scientists and engineers who are beginning their research careers.  

NASA Glenn Employee Named AIAA Fellow

Portrait of Brett A. Bednarcyk
Brett A. Bednarcyk
Credit: NASA 

Brett A. Bednarcyk, a materials research engineer at NASA’s Glenn Research Center in Cleveland, has been named an American Institute of Aeronautics and Astronautics (AIAA) Fellow. His work is focused on multiscale modeling and integrated computational materials engineering of composite materials and structures. He has co-authored two textbooks on these subjects. 

AIAA Fellows are recognized for their notable and valuable contributions to the arts, sciences, or technology of aeronautics and astronautics.  

Glenn’s Dr. Heather Oravec Named Outstanding Civil Engineer  

Portrait of Dr. Heather Oravec
Dr. Heather Oravec
Credit: The University of Akron 

The American Society of Civil Engineers (ASCE) Cleveland Chapter has named Dr. Heather Oravec, a mechanical engineering research associate professor supporting NASA Glenn Research Center’s Engineering and Research Support (GEARS) contract team, the 2024 Outstanding Civil Engineer of the Year. Oravec is a research leader in the areas of terramechanics and off-road tire development for planetary rovers and works in NASA Glenn’s Simulated Lunar Operations (SLOPE) Lab. 

This award honors a civil engineer who has made significant contributions to the field and to the community, furthering the recognition of civil engineers through work and influence. 

NASA Fire Safety Test Took on Reduced Gravity

12 February 2025 at 07:05

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A still image of a video that shows a plastic rod and cotton-fiberglass fabric being burned during a ground test.
A still image of a video that shows a plastic rod and cotton-fiberglass fabric being burned during a ground test of the Lunar-g Combustion Investigation (LUCI) experiment.
Credit: Voyager Technologies

An experiment studying how solid materials catch fire and burn in the Moon’s gravity was launched on Blue Origin’s New Shepard suborbital flight this month. 

Developed by NASA’s Glenn Research Center in Cleveland together with Voyager Technologies, the Lunar-g Combustion Investigation (LUCI) will help researchers determine if conditions on the Moon – with reduced gravity – might be a more hazardous environment for fire safety. 

The video shows a plastic rod and cotton-fiberglass fabric being burned during a ground test of the Lunar-g Combustion Investigation (LUCI) experiment. Scientists will compare the ground test video to the video recorded on the Blue Origin flight. 
Credit: Voyager Technologies

On this flight, LUCI tested flammability of cotton-fiberglass fabric and plastic rods, and once launched, the payload capsule rotated at a speed to simulate lunar gravity. NASA Glenn researchers will analyze data post-flight.

A frosted box containing the LUCI experiment closed and ready to ship for the flight.
A plastic rod and cotton-fiberglass fabric that were burned during testing for the Lunar-g Combustion Investigation. New, unburned samples were lit on fire during the flight. 
Credit: Voyager Technologies 

LUCI’s findings will help NASA and its partners design safe spacecraft and spacesuits for future Moon and Mars missions. 

For more information on LUCI and the mission, visit. 

NASA Glenn Holds Day of Remembrance 

12 February 2025 at 07:05

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

An astronaut in a flight suit, left, and NASA’s acting administrator, right, adjust a large wreath with red and white carnations to a stand in front of a memorial marker.
NASA astronaut Kayla Barron, left, and NASA Acting Administrator Janet Petro place a wreath at the Space Shuttle Columbia Memorial as part of NASA’s Day of Remembrance at Arlington National Cemetery in Arlington, Virginia.
Credit: NASA/Bill Ingalls 

NASA observed its annual Day of Remembrance on Jan. 23, honoring the members of the NASA family who lost their lives in the pursuit of exploration and discovery for the benefit of humanity. The annual event acknowledges the crews of Apollo 1 and the space shuttles Challenger and Columbia. 

NASA Acting Administrator Janet Petro and astronaut Kayla Barron participated in an observance at Arlington National Cemetery in Arlington, Virginia. Wreaths were laid in memory of the men and women who lost their lives in the quest for space exploration. 

The acting director of NASA’s Kennedy Space Center stands on stage in front of a podium with a NASA emblem and addresses an audience of Glenn employees. The Apollo I mission patch is displayed on a video screen behind him.
Acting Director of NASA’s Kennedy Space Center Kelvin Manning shares insights during Glenn’s NASA Day of Remembrance Observance. He talks about the lessons learned that resulted in increased measures for astronaut safety.
Credit: NASA/Sara Lowthian-Hanna 

Several agency centers also held observances for NASA Day of Remembrance. NASA’s Glenn Research Center in Cleveland hosted an observance on Jan. 28 with remarks from Center Director Dr. Jimmy Kenyon and a keynote address from the acting director of NASA’s Kennedy Space Center in Florida, Kelvin Manning.  

Kenyon reflected on the loss of the astronauts and the impact on their families. A large part of honoring their legacy, he said, is committing to a culture of safety awareness and practices. Learning what went wrong is vital to safely moving forward into the future. He then introduced a video recognizing the fallen heroes.  

A woman stands at the back of the auditorium holding a trumpet and playing Taps.
NASA Glenn Research Center’s Amanda Shalkhauser plays Taps prior to a moment of silence during Glenn’s NASA Day of Remembrance Observance.
Credit: NASA/Sara Lowthian-Hanna 

Manning, who worked with the families of the Apollo I astronauts to learn their stories and honor their legacy through an exhibit at NASA Kennedy, shared insights into the causes of the tragedy. He talked about the lessons learned through the investigation that resulted in increased measures for astronaut safety. 

Kenyon then carried a memorial wreath to the front of the stage. NASA Glenn’s Amanda Shalkhauser played Taps, which was followed by a moment of silence. 

NASA’s X-59 Turns Up Power, Throttles Through Engine Tests

11 February 2025 at 14:36

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA's supersonic X-59 undergoes maximum afterburner testing at dusk, with a bright, fiery exhaust extending from its tail. Visible in the superhot plume, which features vibrant hues of blue, purple, and orange, are distinct Mach diamonds—also known as shock diamonds.
NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.
Credit: Lockheed Martin/Gary Tice

NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.

In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.

“We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”

The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.

In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
Credit: NASA/Lillianne Hammel 

A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.

The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.

Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.

The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.

NASA Tests Air Traffic Surveillance Technology Using Its Pilatus PC-12 Aircraft

23 January 2025 at 09:58

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Pilatus PC-12 flies over the runway at NASA’s Armstrong Flight Research Center. The white plane shines bright against the Mojave Desert landscape. The red NASA worm figures prominently on the tail of the plane and a blue stripe lining the fuselage with the NASA meatball logo under the pilot's window. The plane’s call sign, also in blue, N606NA is brightly painted above the blue stripe.
Equipped with state-of-the-art technology to test and evaluate communication, navigation, and surveillance systems NASA’s Pilatus PC-12 performs touch-and-go maneuvers over a runway at NASA’s Armstrong Flight Research Center in Edwards, California on Sept. 23, 2024. Researchers will use the data to understand Automatic Dependent Surveillance-Broadcast (ADS-B) signal loss scenarios for air taxi flights in urban areas. To prepare for ADS-B test flights pilots and crew from NASA Armstrong and NASA’s Glenn Research Center in Cleveland, ran a series of familiarization flights. These flights included several approach and landings, with an emphasis on avionics, medium altitude air-work with steep turns, slow flight and stall demonstrations.
NASA/Steve Freeman

As air taxis, drones, and other innovative aircraft enter U.S. airspace, systems that communicate an aircraft’s location will be critical to ensure air traffic safety.

The Federal Aviation Administration (FAA) requires aircraft to communicate their locations to other aircraft and air traffic control in real time using an Automatic Dependent Surveillance-Broadcast (ADS-B) system. NASA is currently evaluating an ADS-B system’s ability to prevent collisions in a simulated urban environment. Using NASA’s Pilatus PC-12 aircraft, researchers are investigating how these systems could handle the demands of air taxis flying at low altitudes through cities.  

When operating in urban areas, one particular challenge for ADS-B systems is consistent signal coverage. Like losing cell-phone signal, air taxis flying through densely populated areas may have trouble maintaining ADS-B signals due to distance or interference. If that happens, those vehicles become less visible to air traffic control and other aircraft in the area, increasing the likelihood of collisions.

In a briefing room at NASA’s Armstrong Flight Research Center, in Edwards, California, NASA pilot Kurt Blankenship wears a blue flight-suit and sits at a brown desk to review flight plans on a rectangular flight tablet. The tablet displays a map of Edwards Air Force Base and Rogers Dry Lakebed with directional lines in light blue and flight zones designated in dashed lines and purple circles.
NASA pilot Kurt Blankenship maps out flight plans during a pre-flight brief. Pilots, crew, and researchers from NASA’s Armstrong Flight Research Center in Edwards, California and NASA’s Glenn Research Center in Cleveland are briefed on the flight plan to gather Automatic Dependent Surveillance-Broadcast signal data between the aircraft and ping-Stations on the ground at NASA Armstrong. These flights are the first cross-center research activity with the Pilatus-PC-12 at NASA Armstrong.
NASA/Steve Freeman

To simulate the conditions of an urban flight area and better understand signal loss patterns, NASA researchers established a test zone at NASA’s Armstrong Flight Research Center in Edwards, California, on Sept. 23 and 24, 2024.

Flying in the agency’s Pilatus PC-12 in a grid pattern over four ADS-B stations, researchers collected data on signal coverage from multiple ground locations and equipment configurations. Researchers were able to pinpoint where signal dropouts occurred from the strategically placed ground stations in connection to the plane’s altitude and distance from the stations. This data will inform future placement of additional ground stations to enhance signal boosting coverage.  

“Like all antennas, those used for ADS-B signal reception do not have a constant pattern,” said Brad Snelling, vehicle test team chief engineer for NASA’s Air Mobility Pathfinders project. “There are certain areas where the terrain will block ADS-B signals and depending on the type of antenna and location characteristics, there are also flight elevation angles where reception can cause signal dropouts,” Snelling said. “This would mean we need to place additional ground stations at multiple locations to boost the signal for future test flights. We can use the test results to help us configure the equipment to reduce signal loss when we conduct future air taxi flight tests.”

Wearing a dark red shirt, NASA researcher Dennis Iannicca, sits at a control monitor with three video screens, a laptop, and a control board with dials. The gray-colored control station is inside the Mobile Operations Facility, a large trailer that houses multiple computer workstations to monitor flight testing. The ADS-B research is being done at NASA’s Armstrong Flight Research Center in Edwards, California.
Working in the Mobile Operations Facility at NASA’s Armstrong Flight Research Center in Edwards, California, NASA Advanced Air Mobility researcher Dennis Iannicca adjusts a control board to capture Automatic Dependent Surveillance-Broadcast (ADS-B) data during test flights. The data will be used to understand ADS-B signal loss scenarios for air taxi flights in urban areas.
NASA/Steve Freeman

The September flights at NASA Armstrong built upon earlier tests of ADS-B in different environments. In June, researchers at NASA’s Glenn Research Center in Cleveland flew the Pilatus PC-12 and found a consistent ADS-B signal between the aircraft and communications antennas mounted on the roof of the center’s Aerospace Communications Facility. Data from these flights helped researchers plan out the recent tests at NASA Armstrong. In December 2020, test flights performed under NASA’s Advanced Air Mobility National Campaign used an OH-58C Kiowa helicopter and ground-based ADS-B stations at NASA Armstrong to collect baseline signal information.

NASA’s research in ADS-B signals and other communication, navigation, and surveillance systems will help revolutionize U.S. air transportation. Air Mobility Pathfinders researchers will evaluate the data from the three separate flight tests to understand the different signal transmission conditions and equipment needed for air taxis and drones to safely operate in the National Air Space. NASA will use the results of this research to design infrastructure to support future air taxi communication, navigation, and surveillance research and to develop new ADS-B-like concepts for uncrewed aircraft systems.

NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech

21 January 2025 at 07:23

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A white and blue test rover on sandy red Martian-simulated terrain traverses over large boulders, testing shape memory alloy spring tires.
A test rover with shape memory alloy spring tires traverses rocky, Martian-simulated terrain.
Credit: NASA

The mystique of Mars has been studied for centuries. The fourth planet from the Sun is reminiscent of a rich, red desert and features a rugged surface challenging to traverse. While several robotic missions have landed on Mars, NASA has only explored 1% of its surface. Ahead of future human and robotic missions to the Red Planet, NASA recently completed rigorous rover testing on Martian-simulated terrain, featuring revolutionary shape memory alloy spring tire technology developed at the agency’s Glenn Research Center in Cleveland in partnership with Goodyear Tire & Rubber.

Rovers — mobile robots that explore lunar or planetary surfaces — must be equipped with adequate tires for the environments they’re exploring. As Mars has an uneven, rocky surface, durable tires are essential for mobility. Shape memory alloy (SMA) spring tires help make that possible.

Shape memory alloys are metals that can return to their original shape after being bent, stretched, heated, and cooled. NASA has used them for decades, but applying this technology to tires is a fairly new concept.

“We at Glenn are one of the world leaders in bringing the science and understanding of how you change the alloy compositions, how you change the processing of the material, and how you model these systems in a way that we can control and stabilize the behaviors so that they can actually be utilized in real applications,” said Dr. Santo Padula II, materials research engineer at NASA Glenn.

A group of nine researchers pose with a white and blue test rover on sandy red Martian-simulated terrain.
Researchers from NASA’s Glenn Research Center and Airbus Defence & Space pose with a test rover on Martian-simulated terrain.
Credit: NASA

Padula and his team have tested several applications for SMAs, but his epiphany of the possibilities for tires came about because of a chance encounter.

While leaving a meeting, Padula encountered Colin Creager, a mechanical engineer at NASA Glenn whom he hadn’t seen in years. Creager used the opportunity to tell him about the work he was doing in the NASA Glenn Simulated Lunar Operations (SLOPE) Laboratory, which can simulate the surfaces of the Moon and Mars to help scientists test rover performance. He brought Padula to the lab, where Padula immediately took note of the spring tires. At the time, they were made of steel.

Padula remarked, “The minute I saw the tire, I said, aren’t you having problems with those plasticizing?” Plasticizing refers to a metal undergoing deformation that isn’t reversible and can lead to damage or failure of the component.

“Colin told me, ‘That’s the only problem we can’t solve.’” Padula continued, “I said, I have your solution. I’m developing a new alloy that will solve that. And that’s how SMA tires started.”

From there, Padula, Creager, and their teams joined forces to improve NASA’s existing spring tires with a game-changing material: nickel-titanium SMAs. The metal can accommodate deformation despite extreme stress, permitting the tires to return to their original shape even with rigorous impact, which is not possible for spring tires made with conventional metal.

Credit: NASA

Since then, research has been abundant, and in the fall of 2024, teams from NASA Glenn traveled to Airbus Defence and Space in Stevenage, United Kingdom, to test NASA’s innovative SMA spring tires. Testing took place at the Airbus Mars Yard — an enclosed facility created to simulate the harsh conditions of Martian terrain.

“We went out there with the team, we brought our motion tracking system and did different tests uphill and back downhill,” Creager said. “We conducted a lot of cross slope tests over rocks and sand where the focus was on understanding stability because this was something we had never tested before.”

During the tests, researchers monitored rovers as the wheels went over rocks, paying close attention to how much the crowns of the tires shifted, any damage, and downhill sliding. The team expected sliding and shifting, but it was very minimal, and testing met all expectations. Researchers also gathered insights about the tires’ stability, maneuverability, and rock traversal capabilities.

As NASA continues to advance systems for deep space exploration, the agency’s Extravehicular Activity and Human Surface Mobility program enlisted Padula to research additional ways to improve the properties of SMAs for future rover tires and other potential uses, including lunar environments.

“My goal is to extend the operating temperature capability of SMAs for applications like tires, and to look at applying these materials for habitat protection,” Padula said. “We need new materials for extreme environments that can provide energy absorption for micrometeorite strikes that happen on the Moon to enable things like habitat structures for large numbers of astronauts and scientists to do work on the Moon and Mars.”

Researchers say shape memory alloy spring tires are just the beginning.

NASA Small Business Funding Enables Aircraft Inspection by Drone

13 January 2025 at 09:50

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A small, black drone with four rotors is shown in the foreground flying in front of a commercial airliner in the background. The airliner is painted white and the front facing windows can be seen behind the drone. Concrete platforms surround the commercial airliner and yellow ramps connect the platforms to the plane.
A Boeing 777-300ER aircraft is being inspected by one of Near Earth Autonomy’s drones Feb. 2, 2024, at an Emirates Airlines facility in Dubai, United Arab Emirates.
Near Earth Autonomy

A small business called Near Earth Autonomy developed a time-saving solution using drones for pre-flight checks of commercial airliners through a NASA Small Business Innovation Research (SBIR) program and a partnership with The Boeing Company.

Before commercial airliners are deemed safe to fly before each trip, a pre-flight inspection must be completed. This process can take up to four hours, and can involve workers climbing around the plane to check for any issues, which can sometimes result in safety mishaps as well as diagnosis errors.

With NASA and Boeing funding to bolster commercial readiness, Near Earth Autonomy developed a drone-enabled solution, under their business unit Proxim, that can fly around a commercial airliner and gather inspection data in less than 30 minutes. The drone can autonomously fly around an aircraft to complete the inspection by following a computer-programmed task card based on the Federal Aviation Administration’s rules for commercial aircraft inspection. The card shows the flight path the drone’s software needs to take, enabling aircraft workers with a new tool to increase safety and efficiency.

“NASA has worked with Near Earth Autonomy on autonomous inspection challenges in multiple domains,” says Danette Allen, NASA senior leader for autonomous systems. 

“We are excited to see this technology spin out to industry to increase efficiencies, safety, and accuracy of the aircraft inspection process for overall public benefit.”

The photos collected from the drone are shared and analyzed remotely, which allows experts in the airline maintenance field to support repair decisions faster from any location. New images can be compared to old images to look for cracks, popped rivets, leaks, and other common issues.

The user can ask the system to create alerts if an area needs to be inspected again or fails an inspection. Near Earth Autonomy estimates that using drones for aircraft inspection can save the airline industry an average of $10,000 per hour of lost earnings during unplanned time on the ground.

Over the last six years, Near Earth Autonomy completed several rounds of test flights with their drone system on Boeing aircraft used by American Airlines and Emirates Airlines.

NASA’s Small Business Innovation Research / Small Business Technology Transfer program, managed by the agency’s Space Technology Mission Directorate, aims to bolster American ingenuity by supporting innovative ideas put forth by small businesses to fulfill NASA and industry needs. These research needs are described in annual SBIR solicitations and target technologies that have significant potential for successful commercialization. 

Small business concerns with 500 or fewer employees, or small businesses partnering with a non-profit research institution such as a university or a research laboratory can apply to participate in the NASA SBIR/STTR program.

❌
❌