Reading view

NASA to Provide Coverage of Progress 91 Launch, Space Station Docking

The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station
The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.
Credit: NASA

NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.

The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.

Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.

After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.

The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.

The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.

Get breaking news, images and features from the space station on Instagram, Facebook, and X.

Learn more about the International Space Station, its research, and its crew, at:

https://www.nasa.gov/station

-end-

Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

NASA Sets Briefings for Next International Space Station Crew Missions

Official crew portrait for NASA’s SpaceX Crew-10 mission with NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov.
Official crew portrait for NASA’s SpaceX Crew-10 mission with NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov.
Credit: NASA

Editor’s note: NASA is rescheduling its upcoming Expedition 73 mission overview briefing and crew news conference originally planned on Monday, Feb. 24. The mission overview briefing now is anticipated to follow NASA’s Crew-10 flight readiness review on Friday, March 7, and the crew news conference will follow the arrival of Crew-10 to the agency’s Kennedy Space Center in Florida. NASA astronaut Jonny Kim will be available on Tuesday, March 18, for limited virtual interviews prior to launch. NASA will share more information on the updated dates and times in the coming days.

Editor’s note: This advisory was updated on Feb. 20, 2025, to reflect an update in participants for the overview news conference.

NASA and its partners will discuss the upcoming Expedition 73 mission aboard the International Space Station during a pair of news conferences on Monday, Feb. 24, from the agency’s Johnson Space Center in Houston.

Mission leadership will participate in an overview news conference at 2 p.m. EST live on NASA+, covering preparations for NASA’s SpaceX Crew-10 launch in March and the agency’s crew member rotation launch on Soyuz in April. Learn how to watch NASA content through a variety of platforms, including social media.

NASA also will host a crew news conference at 4 p.m. and provide coverage on NASA+, followed by individual crew member interviews beginning at 5 p.m. This is the final media opportunity with Crew-10 before the crew members travel to NASA’s Kennedy Space Center in Florida for launch.

The Crew-10 mission, targeted to launch Wednesday, March 12, will carry NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory.

NASA astronaut Jonny Kim, scheduled to launch to the space station on the Soyuz MS-27 spacecraft no earlier than April 8, also will participate in the crew briefing and interviews. Kim will be available again on Tuesday, March 18, for limited virtual interviews prior to launch. NASA will provide additional details on that opportunity when available.

For the Crew-10 mission, a SpaceX Falcon 9 rocket and Dragon spacecraft will launch from Launch Complex 39A at NASA Kennedy. The three-person crew of Soyuz MS-27, including Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, will launch from the Baikonur Cosmodrome in Kazakhstan.

United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Friday, Feb. 21, at 281-483-5111 or at jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson by 9:45 a.m. the day of the event.

U.S. and international media seeking remote interviews with the crew must submit requests to the NASA Johnson newsroom by 5 p.m. on Feb. 21. A copy of NASA’s media accreditation policy is available online.

Briefing participants include (all times Eastern and subject to change based on real-time operations):

2 p.m.: Expedition 73 Overview News Conference

  • Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington
  • Steve Stich, manager, NASA’s Commercial Crew Program, NASA Kennedy
  • Dana Weigel, manager, NASA’s International Space Station Program, NASA Johnson
  • William Gerstenmaier, vice president, Build & Flight Reliability, SpaceX
  • Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA

4 p.m.: Expedition 73 Crew News Conference

  • Jonny Kim, Soyuz MS-27 flight engineer, NASA
  • Anne McClain, Crew-10 spacecraft commander, NASA
  • Nichole Ayers, Crew-10 pilot, NASA
  • Takuya Onishi, Crew-10 mission specialist, JAXA
  • Kirill Peskov, Crew-10 mission specialist, Roscosmos

5 p.m.: Crew Individual Interview Opportunities

  • Crew-10 members and Kim available for a limited number of interviews
Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73.
Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73.
Credit: NASA

Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, Kim is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing the initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.

Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59, and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.

The Crew-10 mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, where she was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.

With 113 days in space, this mission also will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.

The Crew-10 mission will also be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.

Learn more about how NASA innovates for the benefit of humanity through NASA’s Commercial Crew Program at:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov

NASA’s Advancements in Space Continue Generating Products on Earth  

The cover of Spinoff 2025, NASA's annual publication that chronicles commercial products born from space technology, is a detailed view of the lunar surface captured by cameras on the Orion spacecraft on a close approach of the Moon during the Artemis I mission.
The cover of Spinoff 2025, NASA’s annual publication that chronicles commercial products born from space technology, is a detailed view of the lunar surface captured by cameras on the Orion spacecraft on a close approach of the Moon during the Artemis I mission.
Credit: NASA

The latest edition of NASA’s Spinoff publication, which highlights the successful transfer of agency technology to the commercial sector, is now available online.

For nearly 25 years, NASA has supported crew working in low Earth orbit to learn about the space environment and perform research to advance deep space exploration. Astronauts aboard the International Space Station have learned a wealth of lessons and tried out a host of new technologies. This work leads to ongoing innovations benefiting people on Earth that are featured in NASA’s annual publication.  

“The work we do in space has resulted in navigational technologies, lifesaving medical advancements, and enhanced software systems that continue to benefit our lives on Earth,” said Clayton Turner, associate administrator, Space Technology Mission Directorate at NASA Headquarters in Washington. “Technologies developed today don’t just make life on our home planet easier – they pave the way to a sustained presence on the Moon and future missions to Mars.” 

The Spinoff 2025 publication features more than 40 commercial infusions of NASA technologies including: 

  • A platform enabling commercial industry to perform science on the space station, including the growth of higher-quality human heart tissue, knee cartilage, and pharmaceutical crystals that can be grown on Earth to develop new medical treatments.  
  • An electrostatic sprayer technology to water plants without the help of gravity and now used in sanitation, agriculture, and food safety.  
  • “Antigravity” treadmills helping people with a variety of conditions run or walk for exercise, stemming from efforts to improve astronauts’ fitness in the weightlessness of space.  
  • Nutritional supplements originally intended to keep astronauts fit and mitigate the health hazards of a long stay in space.  

As NASA continues advancing technology and research in low Earth orbit to establish a sustained presence at the Moon, upcoming lunar missions are already spinning off technologies on Earth. For example, Spinoff 2025 features a company that invented technology for 3D printing buildings on the Moon that is now using it to print large structures on Earth. Another group of researchers studying how to grow lunar buildings from fungus is now selling specially grown mushrooms and plans to build homes on Earth using the same concept.  

Spinoffs produce innovative technologies with commercial applications for the benefit of all. Other highlights of Spinoff 2025 include quality control on assembly lines inspired by artificial intelligence developed to help rovers navigate Mars, innovations in origami based on math for lasers and optical computing, and companies that will help lead the way to hydrogen-based energy building on NASA’s foundation of using liquid hydrogen for rocket fuel.  

“I’ve learned it’s almost impossible to predict where space technology will find an application in the commercial market,” said Dan Lockney, Technology Transfer program executive at NASA Headquarters in Washington. “One thing I can say for sure, though, is NASA’s technology will continue to spin off, because it’s our goal to advance our missions and bolster the American economy.”  

This publication also features 20 technologies available for licensing with the potential for commercialization. Check out the “Spinoffs of Tomorrow” section to learn more.

Spinoff is part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. Tech Transfer is charged with finding broad, innovative applications for NASA-developed technology through partnerships and licensing agreements, ensuring agency investments benefit the nation and the world.  

To read the latest issue of Spinoff, visit: 

https://spinoff.nasa.gov

-end-

Jasmine Hopkins
Headquarters, Washington
321-432-4624
jasmine.s.hopkins@nasa.gov

NASA Awards Launch Service Task Order for Pandora Mission

The letters NASA on a blue circle with red and white detail, all surrounded by a black background
Credit: NASA

NASA has selected SpaceX of Starbase, Texas, to provide the launch service for the agency’s Pandora mission, which will study at least 20 known exoplanets and their host stars to find out how changes in stars affect our observations of exoplanet atmospheres.

The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity awards during VADR’s five-year ordering period, with a maximum total value of $300 million across all contracts.

During its one-year primary mission, Pandora will observe each exoplanet 10 times, observing for 24 hours each visit. It will capture critical data about the planet and its host star during transits, an event where a planet crosses in front of the star it orbits.

The satellite will use an innovative 17-inch (45-centimeter)-wide all-aluminum telescope to simultaneously measure the visible and near-infrared brightness of the host star and obtain near-infrared spectra of the transiting planet. This will allow scientists to cleanly separate star and planetary signals, knowledge that will enhance observations from NASA’s James Webb Space Telescope and future missions searching for habitable worlds, like the agency’s Habitable Worlds Observatory.

Pandora is a joint effort between NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Lawrence Livermore National Laboratory in California. The Astrophysics Pioneers program, from the Astrophysics Division at NASA Headquarters in Washington, funds Pandora and other astrophysics science missions using smaller, lower cost hardware and payloads. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.

To learn more about NASA’s Pandora mission, visit:

https://science.nasa.gov/mission/pandora

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov

NASA Brings Space to New Jersey Classroom with Astronaut Q&A

Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.
(Jan. 13, 2025) Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.
Credit: NASA

Students from the Thomas Edison EnergySmart Charter School in Somerset, New Jersey, will have the chance to connect with NASA astronaut Nick Hague as he answers prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.

Watch the 20-minute space-to-Earth call at 11:10 a.m. EST on Tuesday, Feb. 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.

Media interested in covering the event must RSVP by 5 p.m., Thursday, Feb. 6, to Jeanette Allison at: oyildiz@energysmartschool.org or 732-412-7643.

For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.

Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.

See videos and lesson plans highlighting space station research at:

https://www.nasa.gov/stemonstation

-end-

Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov

Sandra Jones 
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

NASA, Partners to Welcome Fourth Axiom Space Mission to Space Station

The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida no earlier than Spring 2025. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland.
The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida no earlier than Spring 2025. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland.
Credit: SpaceX

Editor’s note: This release was updated on Jan. 31, 2025. Axiom Mission 4 will launch from Florida no earlier than spring 2025.

NASA and its international partners have approved the crew for Axiom Space’s fourth private astronaut mission to the International Space Station, launching from Florida no earlier than spring 2025.

Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.

“I am excited to see continued interest and dedication for the private astronaut missions aboard the International Space Station,” said Dana Weigel, manager of NASA’s International Space Station Program at the agency’s Johnson Space Center in Houston. “As NASA looks toward the future of low Earth orbit, private astronaut missions help pave the way and expand access to the unique microgravity environment.”

The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft and travel to the space station. Once docked, the private astronauts plan to spend up to 14 days aboard the orbiting laboratory, conducting a mission comprised of science, outreach, and commercial activities. The mission will send the first ISRO astronaut to the station as part of a joint effort between NASA and the Indian space agency. The private mission also carries the first astronauts from Poland and Hungary to stay aboard the space station.

“Working with the talented and diverse Ax-4 crew has been a deeply rewarding experience,” said Whitson. “Witnessing their selfless dedication and commitment to expanding horizons and creating opportunities for their nations in space exploration is truly remarkable. Each crew member brings unique strengths and perspectives, making our mission not just a scientific endeavor, but a testament to human ingenuity and teamwork. The importance of our mission is about pushing the limits of what we can achieve together and inspiring future generations to dream bigger and reach farther.”

The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 with four private astronauts who spent eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.

The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time.

The space station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy in low Earth orbit where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. 

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/commercial-space

-end-

Josh Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov

Alexis DeJarnette
Axiom Space
850-368-9446
alexis@axiomspace.com

NASA Invests in Artemis Studies to Support Long-Term Lunar Exploration

Artist's rendering of astronauts managing logistics on the lunar surface.
Artist’s rendering of astronauts managing logistics on the lunar surface.
Credit: NASA

NASA awarded new study contracts Thursday to help support life and work on the lunar surface. As part of the agency’s blueprint for deep space exploration to support the Artemis campaign, nine American companies in seven states are receiving awards.

The Next Space Technologies for Exploration Partnerships Appendix R contracts will advance learning in managing everyday challenges in the lunar environment identified in the agency’s Moon to Mars architecture

“These contract awards are the catalyst for developing critical capabilities for the Artemis missions and the everyday needs of astronauts for long-term exploration on the lunar surface,” said Nujoud Merancy, deputy associate administrator, Strategy and Architecture Office at NASA Headquarters in Washington. “The strong response to our request for proposals is a testament to the interest in human exploration and the growing deep-space economy. This is an important step to a sustainable return to the Moon that, along with our commercial partners, will lead to innovation and expand our knowledge for future lunar missions, looking toward Mars.”

The selected proposals have a combined value of $24 million, spread across multiple companies, and propose innovative strategies and concepts for logistics and mobility solutions including advanced robotics and autonomous capabilities:

  • Blue Origin, Merritt Island, Florida – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; surface cargo and mobility; and integrated strategies
  • Intuitive Machines, Houston, Texas – logistics handling and offloading; and surface cargo and mobility
  • Leidos, Reston, Virginia – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies
  • Lockheed Martin, Littleton, Colorado – logistical carriers; logistics transfer; and surface cargo and mobility
  • MDA Space, Houston – surface cargo and mobility
  • Moonprint, Dover, Delaware – logistical carriers
  • Pratt Miller Defense, New Hudson, Michigan – surface cargo and mobility
  • Sierra Space, Louisville, Colorado – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies
  • Special Aerospace Services, Huntsville, Alabama – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; trash management; surface cargo and mobility; and integrated strategies

NASA is working with industry, academia, and the international community to continuously evolve the blueprint for crewed exploration and taking a methodical approach to investigating solutions that set humanity on a path to the Moon, Mars, and beyond.

For more on NASA’s mission to return to the Moon, visit:

https://www.nasa.gov/humans-in-space/artemis

-end-

Cindy Anderson / James Gannon
Headquarters, Washington
202-358-1600
cindy.a.anderson@nasa.gov / james.h.gannon@nasa.gov 

Liftoff! NASA Sends Science, Tech to Moon on Firefly, SpaceX Flight

Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, 2025 as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.
Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.
Credit: NASA/Frank Michaux

A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.

Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.

“This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.” 

Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.  

“NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”

As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars. 

There are 10 NASA payloads flying on this flight:

  • Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University 
  • Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics  
  • Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland
  • Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace 
  • Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University 
  • Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center 
  • Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University 
  • Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
  • Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
  • Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center 

“With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”

Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.

Learn more about NASA’s CLPS initiative at:

https://www.nasa.gov/clps

-end-

Amber Jacobson / Karen Fox
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov

Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov

Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov

NASA Selects Electrical Systems Engineering Services Contractor

The letters NASA on a blue circle with red and white detail, all surrounded by a black background
Credit: NASA

NASA has selected Columbus Technologies and Services Inc. of El Segundo, California, to provide electrical and electronic engineering support to the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

The Electrical Systems Engineering Services IV is a cost-plus-award-fee indefinite-delivery/indefinite-quantity contract with a maximum estimated value of $1.1 billion. The base period of performance begins on April 9 and runs for five years.

Work performed as part of the contract will assist various technical divisions at NASA Goddard with electrical and electronic responsibilities. These divisions include the Electrical Engineering Division, Instrument Systems and Technology Division, Software Engineering Division, and Mission Engineering and Systems Analysis Division. The contractor also will help manage the development of space flight, airborne, and ground system hardware, including design, testing, and fabrication.

For information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Share

Details

Last Updated
Jan 08, 2025

Earth to Space Call: NASA Leaders to Speak with Station Astronauts

NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.
NASA Administrator Bill Nelson, and NASA Deputy Administrator Pam Melroy, react as they are recognized by employees during a NASA agencywide all hands on Dec. 6, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.
Credit: NASA/Bill Ingalls

Editor’s Note: This advisory was updated Jan. 2, 2025, to reflect a new date and time for the Earth to space call.

NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy will speak with NASA astronauts Nick Hague, Butch Wilmore, Suni Williams, and Don Pettit on Wednesday, Jan. 8, to discuss their mission aboard the International Space Station. The call previously was scheduled for Monday, Jan. 6.

The Earth to space call coverage begins at 1:25 p.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. 

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and eventually, to Mars.

For NASA’s launch blog and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Meira Bernstein / Josh Finch
Headquarters, Washington
202-358-1100
meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov

❌