Normal view

Before yesterdayMain stream

Liftoff! NASA Tech, Science En Route to Moon with Intuitive Machines

27 February 2025 at 07:49

Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Intuitive Machines’ Nova-C lunar lander (IM-2) and NASA’s Lunar Trailblazer soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 7:16 p.m. EST, Wednesday, Feb. 26. The IM-2 launch, which is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, is carrying NASA technology and science demonstrations, and other commercial payloads to Mons Mouton, a lunar plateau to advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions. (Credit: NASA)

The next set of NASA science and technology demonstrations is on its way to the lunar surface, where they will gather data about Earth’s nearest neighbor and help pave the way for American astronauts to explore the Moon and beyond, for the benefit of all.

Carrying NASA instruments as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ IM-2 mission launched at 7:16 p.m. EST, Feb. 26, aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. Intuitive Machines’ lunar lander is scheduled to touch down on Thursday, March 6, in Mons Mouton, a plateau in the Moon’s South Pole.

“With each CLPS mission, the United States is leading the way in expanding our reach and refining our capabilities, turning what was once dreams into reality,” said NASA acting Administrator Janet Petro. “These science and technology demonstrations are more than payloads – they represent the foundation for future explorers who will live and work on the Moon. By partnering with American industry, we are driving innovation, strengthening our leadership in space, and preparing for sending humans farther into the solar system, including Mars.”

Intuitive Machines’ NOVA-C lunar lander captures a selfie with Earth in the background shortly after separation.  Credit: Intuitive Machines

Once on the Moon, the NASA CLPS investigations will aim to measure the potential presence of volatiles or gases from lunar soil – one of the first on-site demonstrations of resource use on the Moon. In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any future orbiting or incoming spacecraft to give them a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone designed to hop across the lunar surface.

NASA’s Lunar Trailblazer spacecraft, which launched as a rideshare with the IM-2 mission, also began its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon. Lunar Trailblazer will discover where the Moon’s water is, what form it is in, and how it changes over time. Observations gathered during its two-year prime mission will contribute to the understanding of water cycles on airless bodies throughout the solar system while also supporting future human and robotic missions to the Moon by identifying where water is located. 

NASA’s Artemis campaign includes conducting more science to better understand planetary processes and evolution, to search for evidence of water and other resources, and support long-term, sustainable human exploration.

The NASA science and technology instruments that launched aboard the IM-2 mission are:

  • Polar Resources Ice Mining Experiment-1 (PRIME-1): This experiment will explore the Moon’s subsurface and analyze where lunar resources may reside. The experiment’s two key instruments will demonstrate the ability to extract and analyze lunar soil to detect volatile chemical compounds that turn into gas. The two instruments will work in tandem: The Regolith and Ice Drill for Exploring New Terrains will drill into the Moon’s surface to collect samples, while the Mass Spectrometer Observing Lunar Operations will analyze these samples to determine the gas composition released across the sampling depth. The PRIME-1 technology will provide valuable data to better understand the Moon’s surface and how to work with and on it.
  • Laser Retroreflector Array (LRA): This collection of eight retroreflectors will enable precision laser ranging, which is a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The LRA is a passive optical instrument and will function as a permanent location marker on the Moon for decades to come.   
  • Micro Nova Hopper: Funded by NASA’s Space Technology Mission Directorate Tipping Point initiative, Intuitive Machines’ Micro Nova hopper, Grace, is designed to enable high-resolution surveying of the lunar surface under its flight path. This autonomous propulsive drone aims to deploy to the surface and hop into a nearby crater to survey the lunar surface and send science data back to the lander. It’s designed to hop in and out of a permanently shadowed region, providing a first look into undiscovered regions that may provide critical information to sustain a human presence on the Moon.
  • Nokia Lunar Surface Communications System (LSCS): Also developed with funding from NASA’s Tipping Point initiative, Nokia’s LSCS 4G/LTE communications system will demonstrate cellular communications between the Intuitive Machines lander, a Lunar Outpost rover, and the Micro Nova hopper. Engineered to transmit high-definition video, command-and-control messages, and sensor and telemetry data, the LSCS aims to demonstrate an ultra-compact advanced communication solution for future infrastructure on the Moon and beyond.

Learn more about NASA’s CLPS initiative at:

https://www.nasa.gov/clps

-end-

Karen Fox / Jasmine Hopkins
Headquarters, Washington
202-358-1600 / 321-432-4624
karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov

Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov

Fourth Launch of NASA Instruments Planned for Near Moon’s South Pole

26 February 2025 at 15:39
A SpaceX Falcon 9 rocket stands vertical on Tuesday, Feb. 25, 2025, at Launch Complex 39A at NASA's Kennedy Space Center ahead of Intuitive Machines' IM-2 mission as part of the agency's Commercial Lunar Payload Services initiative and Artemis campaign.
A SpaceX Falcon 9 rocket stands vertical on Tuesday, Feb. 25, 2025, at Launch Complex 39A at NASA’s Kennedy Space Center ahead of Intuitive Machines’ IM-2 mission as part of the agency’s Commercial Lunar Payload Services initiative and Artemis campaign.
SpaceX

Sending instruments to the Moon supports a growing lunar economy on and off Earth, and the next flight of NASA science and technology is only days away. NASA’s CLPS (Commercial Lunar Payload Services) initiative is a lunar delivery service that sends NASA science and technology instruments to various geographic locations on the Moon using American companies. These rapid, cost-effective commercial lunar missions at a cadence of about two per year improve our understanding of the lunar environment in advance of future crewed missions to the Moon as part of the agency’s broader Artemis campaign.  

Of the 11 active CLPS contracts, there have been three CLPS launches to date: Astrobotic’s Peregrine Mission One, which collected data in transit but experienced an anomaly that prevented it from landing on the Moon; Intuitive Machines’ IM-1 mission, which landed, tipped over, and operated on the lunar surface; and Firefly Aerospace’s Blue Ghost Mission One that is currently enroute and scheduled to land in early March 2025. The CLPS contract awards cover end-to-end commercial payload delivery services, including payload integration, launch from Earth, landing on the surface of the Moon, and mission operations. 

NASA’s fourth CLPS flight is from Intuitive Machines with their IM-2 mission. The IM-2 mission is carrying NASA science and technology instruments to Mons Mouton, a lunar plateau just outside of 5 degrees of the South Pole of the Moon, closer to the pole than any preceding lunar mission.  

Scheduled to launch no earlier than Wednesday and land approximately eight days later, Intuitive Machines’ Nova-C lander, named Athena, will carry three NASA instruments to the lunar South Pole region – the Polar Resources Ice Mining Experiment-1 (PRIME-1) suite and the Laser Retroreflector Array (LRA). 

The PRIME-1 suite consists of two instruments, the TRIDENT drill (The Regolith Ice Drill for Exploring New Terrain) and MSolo (Mass Spectrometer observing lunar operations), which will work together to extricate lunar soil samples, known as regolith, from the subsurface and analyze their composition to further understand the lunar environment and gain insight on potential resources that can be extracted for future examination. 

The meter-long TRIDENT drill is designed to extract lunar regolith, up to about three feet below the surface. It will also measure soil temperature at varying depths below the surface, which will help to verify existing lunar thermal models that are used for ice stability calculations and resource mapping. By drilling into the lunar regolith, information is gathered to help answer questions about the lunar regolith geotechnical properties, such as soil strength, both at the surface and in the subsurface that will help inform Artemis infrastructure objectives. The data will be beneficial when designing future systems for on-site resource utilization that will use local resources to create everything from landing pads to rocket fuel. The lead development organization for TRIDENT is Honeybee Robotics, a Blue Origin Company. 

The MSOLO instrument is a mass spectrometer capable of identifying and quantifying volatiles (or gasses that easily evaporate) found at or beneath the lunar surface, including– if it’s present in the regolith within the drill’s reach – water and oxygen, brought to the surface by the TRIDENT drill. This instrument can also detect any gases that emanate from the lander, drilling process, and other payloads conducting operations on the surface. Using MSolo to study the volatile gases found on the Moon can help us understand how the lander’s presence might alter the local environment. The lead development organization is INFICON of Syracuse, New York, in partnership with NASA’s Kennedy Space Center in Florida. 

NASA’s LRA is a collection of eight retroreflectors that enable precision laser ranging, which is a measurement of the distance between the orbiting or landing spacecraft to the reflector on the lander. The LRA instrument is passive, meaning it does not power on. It will function as a permanent location marker on the Moon for decades to come, similar to its predecessors. The lead development organization is NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

In addition to the CLPS instruments, two technology demonstrations aboard IM-2 were developed through NASA’s Tipping Point opportunity. These are collaborations with the agency’s Space Technology Mission Directorate and industry that support development of commercial space capabilities and benefit future NASA missions.  

Intuitive Machines developed a small hopping robot, Grace, named after Grace Hopper, computer scientist and mathematician. Grace will deploy as a secondary payload from the lander and enable high-resolution imaging and science surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 

Nokia will test a Lunar Surface Communications System that employs the same cellular technology here on Earth. Reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission, this tipping point technology aims to demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 

Launching as a rideshare alongside the IM-2 mission, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit where it will map the distribution of water – and other forms of water – on the Moon. 

Future CLPS flights will continue to send payloads to the near side, far side, and South Pole regions of the Moon where investigations and exploration are informed by each area’s unique characteristics. With a pool of 13 American companies under CLPS, including a portfolio of 11 lunar deliveries by five vendors sending more than 50 individual science and technology instruments to lunar orbit and the surface of the Moon, NASA continues to advance long-term exploration of the Moon, and beyond to Mars.   

NASA Prepares Gateway Lunar Space Station for Journey to Moon

25 February 2025 at 07:03
A side view of the Power and Propulsion Element for Gateway in a cleanroom at Maxar Space Systems in Palo Alto, California. The spacecraft is tilted at an angle, revealing a gold-colored tank housed inside the large cylindrical structure. The exterior is lined with wiring and connectors.  Technicians in cleanroom attire work below.
The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.
Maxar Space Systems

NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.

Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  

The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.

The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.

Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.

The Power and Propulsion Element of Gateway is shown being assembled inside a clean room at Maxar Space Systems in Palo Alto, California. The large cylindrical structure has numerous wires and components attached to its black exterior paneling. A reflective gold-colored fuel tank is seen inside the main clylinder. Engineers in cleanroom suits work around the spacecraft, inspecting and assembling its systems.
The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.
Maxar Space Systems
An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission.
NASA/Alberto Bertolin
Artist's rendering of the Gateway lunar space station in its initial stage, featuring the Habitation and Logistics Outpost (HALO) joined with the Power and Propulsion Element (PPE). PPE is depicted using its Solar Electric Propulsion (SEP) system, with blue plumes of ionized xenon gas streaming from the spacecraft. The Moon and Earth are visible in the background.
An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon.
NASA/Alberto Bertolin
Facebook logo
Instagram logo

NASA’s Mini Rover Team Is Packed for Lunar Journey

11 February 2025 at 14:38

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A team at JPL packed up three small Moon rovers, delivering them in February to the facility where they’ll be attached to a commercial lunar lander in preparation for launch. The rovers are part of a project called CADRE that could pave the way for potential future multirobot missions. NASA/JPL-Caltech

A trio of suitcase-size rovers and their base station have been carefully wrapped up and shipped off to join the lander that will deliver them to the Moon’s surface.

Three small NASA rovers that will explore the lunar surface as a team have been packed up and shipped from the agency’s Jet Propulsion Laboratory in Southern California, marking completion of the first leg of the robots’ journey to the Moon.

The rovers are part of a technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration), which aims to show that a group of robots can collaborate to gather data without receiving direct commands from mission controllers on Earth. They’ll use their cameras and ground-penetrating radars to send back imagery of the lunar surface and subsurface while testing out the novel software that enables them to work together autonomously.

The CADRE rovers will launch to the Moon aboard IM-3, Intuitive Machines’ third lunar delivery, which has a mission window that extends into early 2026, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Once installed on Intuitive Machines’ Nova-C lander, they’ll head to the Reiner Gamma region on the western edge of the Moon’s near side, where the solar-powered, suitcase-size rovers will spend the daylight hours of a lunar day (the equivalent of about 14 days on Earth) carrying out experiments. The success of CADRE could pave the way for potential future missions with teams of autonomous robots supporting astronauts and spreading out to take simultaneous, distributed scientific measurements.

Members of a JPL team working on NASA’s CADRE
Members of a JPL team working on NASA’s CADRE technology demonstration use temporary red handles to move one of the project’s small Moon rovers to prepare it for transport to Intuitive Machines’ Houston facility, where it will be attached to the company’s third lunar lander.
NASA/JPL-Caltech

Construction of the CADRE hardware — along with a battery of rigorous tests to prove readiness for the journey through space — was completed in February 2024.

To get prepared for shipment to Intuitive Machines’ Houston facility, each rover was attached to its deployer system, which will lower it via tether from the lander onto the dusty lunar surface. Engineers flipped each rover-deployer pair over and attached it to an aluminum plate for safe transit. The rovers were then sealed in protective metal-frame enclosures that were fitted snuggly into metal shipping containers and loaded onto a truck. The hardware arrived safely on Sunday, Feb. 9.

“Our small team worked incredibly hard constructing these robots and putting them to the test, and we have been eagerly waiting for the moment where we finally see them on their way,” said Coleman Richdale, the team’s assembly, test, and launch operations lead at JPL. “We are all genuinely thrilled to be taking this next step in our journey to the Moon, and we can’t wait to see the lunar surface through CADRE’s eyes.”

The rovers, the base station, and a camera system that will monitor CADRE experiments on the Moon will be integrated with the lander — as will several other NASA payloads — in preparation for the launch of the IM-3 mission.

More About CADRE

A division of Caltech in Pasadena, California, JPL manages CADRE for the Game Changing Development program within NASA’s Space Technology Mission Directorate. The technology demonstration was selected under the agency’s Lunar Surface Innovation Initiative, which was established to expedite the development of technologies for sustained presence on the lunar surface. NASA’s Science Mission Directorate manages the CLPS initiative. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena facility. Clemson University in South Carolina contributed research in support of the project.

For more about CADRE, go to:

https://go.nasa.gov/cadre

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2025-018

China Tries to Spook U.S. with Army of Dancing Robots

31 January 2025 at 15:33

China’s state-run Global Times on Thursday marveled at the high-tech entertainments on display for this year’s Spring Festival, praising a troupe of dancing robots as evidence the Communist nation has become the world’s leading tech power.

The post China Tries to Spook U.S. with Army of Dancing Robots appeared first on Breitbart.

NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech

21 January 2025 at 07:23

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A white and blue test rover on sandy red Martian-simulated terrain traverses over large boulders, testing shape memory alloy spring tires.
A test rover with shape memory alloy spring tires traverses rocky, Martian-simulated terrain.
Credit: NASA

The mystique of Mars has been studied for centuries. The fourth planet from the Sun is reminiscent of a rich, red desert and features a rugged surface challenging to traverse. While several robotic missions have landed on Mars, NASA has only explored 1% of its surface. Ahead of future human and robotic missions to the Red Planet, NASA recently completed rigorous rover testing on Martian-simulated terrain, featuring revolutionary shape memory alloy spring tire technology developed at the agency’s Glenn Research Center in Cleveland in partnership with Goodyear Tire & Rubber.

Rovers — mobile robots that explore lunar or planetary surfaces — must be equipped with adequate tires for the environments they’re exploring. As Mars has an uneven, rocky surface, durable tires are essential for mobility. Shape memory alloy (SMA) spring tires help make that possible.

Shape memory alloys are metals that can return to their original shape after being bent, stretched, heated, and cooled. NASA has used them for decades, but applying this technology to tires is a fairly new concept.

“We at Glenn are one of the world leaders in bringing the science and understanding of how you change the alloy compositions, how you change the processing of the material, and how you model these systems in a way that we can control and stabilize the behaviors so that they can actually be utilized in real applications,” said Dr. Santo Padula II, materials research engineer at NASA Glenn.

A group of nine researchers pose with a white and blue test rover on sandy red Martian-simulated terrain.
Researchers from NASA’s Glenn Research Center and Airbus Defence & Space pose with a test rover on Martian-simulated terrain.
Credit: NASA

Padula and his team have tested several applications for SMAs, but his epiphany of the possibilities for tires came about because of a chance encounter.

While leaving a meeting, Padula encountered Colin Creager, a mechanical engineer at NASA Glenn whom he hadn’t seen in years. Creager used the opportunity to tell him about the work he was doing in the NASA Glenn Simulated Lunar Operations (SLOPE) Laboratory, which can simulate the surfaces of the Moon and Mars to help scientists test rover performance. He brought Padula to the lab, where Padula immediately took note of the spring tires. At the time, they were made of steel.

Padula remarked, “The minute I saw the tire, I said, aren’t you having problems with those plasticizing?” Plasticizing refers to a metal undergoing deformation that isn’t reversible and can lead to damage or failure of the component.

“Colin told me, ‘That’s the only problem we can’t solve.’” Padula continued, “I said, I have your solution. I’m developing a new alloy that will solve that. And that’s how SMA tires started.”

From there, Padula, Creager, and their teams joined forces to improve NASA’s existing spring tires with a game-changing material: nickel-titanium SMAs. The metal can accommodate deformation despite extreme stress, permitting the tires to return to their original shape even with rigorous impact, which is not possible for spring tires made with conventional metal.

Credit: NASA

Since then, research has been abundant, and in the fall of 2024, teams from NASA Glenn traveled to Airbus Defence and Space in Stevenage, United Kingdom, to test NASA’s innovative SMA spring tires. Testing took place at the Airbus Mars Yard — an enclosed facility created to simulate the harsh conditions of Martian terrain.

“We went out there with the team, we brought our motion tracking system and did different tests uphill and back downhill,” Creager said. “We conducted a lot of cross slope tests over rocks and sand where the focus was on understanding stability because this was something we had never tested before.”

During the tests, researchers monitored rovers as the wheels went over rocks, paying close attention to how much the crowns of the tires shifted, any damage, and downhill sliding. The team expected sliding and shifting, but it was very minimal, and testing met all expectations. Researchers also gathered insights about the tires’ stability, maneuverability, and rock traversal capabilities.

As NASA continues to advance systems for deep space exploration, the agency’s Extravehicular Activity and Human Surface Mobility program enlisted Padula to research additional ways to improve the properties of SMAs for future rover tires and other potential uses, including lunar environments.

“My goal is to extend the operating temperature capability of SMAs for applications like tires, and to look at applying these materials for habitat protection,” Padula said. “We need new materials for extreme environments that can provide energy absorption for micrometeorite strikes that happen on the Moon to enable things like habitat structures for large numbers of astronauts and scientists to do work on the Moon and Mars.”

Researchers say shape memory alloy spring tires are just the beginning.

Supreme Court upholds looming TikTok ban

17 January 2025 at 09:04

The Supreme Court on Friday upheld a federal law that would ban the Chinese-owned social media platform TikTok just two days before the bipartisan divestiture law is slated to take effect.

"There is no doubt that, for more than 170 million Americans, TikTok offers a distinctive and expansive outlet for expression, means of engagement, and source of community," the court wrote in the unsigned ruling. "But Congress has determined that divestiture is necessary to address its well-supported national security concerns regarding TikTok’s data collection practices and relationship with a foreign adversary. 

"For the foregoing reasons, we conclude that the challenged provisions do not violate petitioners’ First Amendment rights. The judgment of the United States Court of Appeals for the District of Columbia Circuit is affirmed."

There were no noted dissents.

At issue was the Protecting Americans from Foreign Adversary Controlled Applications Act, a law passed by Congress last April with wide bipartisan support. The law gave TikTok nine months to either divest from its Chinese parent company, ByteDance, or be removed from U.S.-based app stores and hosting services. 

SUPREME COURT APPEARS SKEPTICAL OF BLOCKING US BAN ON TIKTOK: WHAT TO KNOW

In passing the law, Congress cited concerns over the app's Chinese ownership, which members said meant the app had the potential to be weaponized or used to amass vast amounts of user data, including from the roughly 170 million Americans who use TikTok.

TikTok, ByteDance and several users of the app swiftly sued to block the ban in May, arguing the legislation would suppress free speech for the millions of Americans who use the platform. After a lower court upheld the ban, the Supreme Court agreed to hear TikTok's emergency request to either block or pause implementation of the law under a fast-track timeline just nine days before the ban was slated to go into effect.

President-elect Donald Trump did not immediately respond to the Supreme Court decision, which comes just days before his inauguration. As president, Trump could move to delay the law, either by not enforcing it vigorously— which would allow TikTok more time to find a buyer, or continue operating as-is—or take other actions that would uphold the status quo.

Trump said he spoke by phone Friday with Chinese President Xi Jinping hours before the Supreme Court decision was published. Trump described the conversation between the two as being "a very good one" both for China and the U.S. He noted that the two had discussed shared interests, including TikTok. 

Trump has also invited TikTok CEO Shou Chew to attend his inauguration. Chew said he plans to attend.

READ THE SUPREME COURT RULING ON TIKTOK LAW – APP USERS, CLICK HERE:

During oral arguments, lawyers for the Biden administration reiterated the argument that TikTok’s Chinese ownership poses a "grave" national security risk for American users. 

U.S. Solicitor General Elizabeth Prelogar cited risks that China could weaponize the app, including by manipulating its algorithm to prioritize certain content or by ordering parent company ByteDance to turn over vast amounts of user data compiled by TikTok on U.S. users.

TRUMP SAYS FATE OF TIKTOK SHOULD BE IN HIS HANDS WHEN HE RETURNS TO WHITE HOUSE

TikTok’s lawyers, meanwhile, sought to frame the case primarily as a restriction on free speech protections under the First Amendment, which the company has argued applies to TikTok’s U.S.-based incorporation.

Noel Francisco, TikTok’s lawyer, argued that the U.S. government has "no valid interest in preventing foreign propaganda," and reiterated TikTok's position that the platform and its owners should be entitled to the highest level of free speech protections under the U.S. Constitution. 

Francisco also argued TikTok cannot divest from its Chinese parent company, citing portions of its source code and intellectual property that are housed in China.  

First Amendment protections must be considered under strict scrutiny, which requires the government to sustain a higher burden of proof in justifying a law's constitutionality. 

More specifically, laws that deal with First Amendment protections must be crafted to serve a compelling government interest, narrowly tailored to achieve that interest.

It's a difficult legal test to satisfy in court. But the U.S. Court of Appeals for the District of Columbia Circuit used it last month in considering the divestiture law, and still voted to uphold it— outlining a way that the Supreme Court could have theoretically considered the case under strict scrutiny and still opted to uphold the law.

During oral arguments at the Supreme Court, several justices appeared skeptical of the company's core argument, which is that the law is a restriction of speech.

"Exactly what is TikTok's speech here?" Justice Clarence Thomas asked in the first moments of oral arguments in an early sign of the court's apparent doubt that the law is in fact a First Amendment violation. 

POTENTIAL TIKTOK BAN: WHAT SOCIAL MEDIA APPS ARE POPPING UP IN APP STORES?


The Supreme Court and its 6-3 conservative majority have been historically deferential to Congress on matters of national security.

The divestiture law in question passed Congress last year under the guidance of top Justice Department officials, who worked directly with House lawmakers to write the bill and help it withstand possible legal challenges.

But it also comes at a time when President-elect Trump has signaled apparent support for the app in recent months.

In December, Trump hosted TikTok CEO Shou Zi Chew at his Mar-a-Lago resort, and later told reporters that his incoming administration will "take a look at TikTok" and the divestiture case. 

Attorneys for the president-elect also filed a brief with the Supreme Court last month, asking justices to delay any decision in the case until after Trump's inauguration on Jan. 20.

The brief did not signal how Trump might act, but cited his request for the court to pause the ban from taking effect until Trump's inauguration. 

Fox News' Bill Mears and Shannon Bream contributed to this report.

❌
❌